Mots-clés : optimal transportation
@article{RM_2022_77_5_a0,
author = {V. I. Bogachev},
title = {Kantorovich problem of optimal transportation of measures: new directions of research},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {769--817},
year = {2022},
volume = {77},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_5_a0/}
}
TY - JOUR AU - V. I. Bogachev TI - Kantorovich problem of optimal transportation of measures: new directions of research JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 769 EP - 817 VL - 77 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_5_a0/ LA - en ID - RM_2022_77_5_a0 ER -
V. I. Bogachev. Kantorovich problem of optimal transportation of measures: new directions of research. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 5, pp. 769-817. http://geodesic.mathdoc.fr/item/RM_2022_77_5_a0/
[1] B. Acciaio, J. Backhoff-Veraguas, and A. Zalashko, “Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization”, Stochastic Process. Appl., 130:5 (2020), 2918–2953 | DOI | MR | Zbl
[2] B. Acciaio, M. Beiglböck, and G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR
[3] K. A. Afonin and V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612 | DOI
[4] J.-J. Alibert, G. Bouchitté, and T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR | Zbl
[5] L. Ambrosio, E. Brué, and D. Semola, Lectures on optimal transport, Unitext, 130, Springer, Cham, 2021, ix+250 pp. | DOI | MR | Zbl
[6] L. Ambrosio, M. Erbar, and G. Savaré, “Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces”, Nonlinear Anal., 137 (2016), 77–134 | DOI | MR | Zbl
[7] L. Ambrosio and N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR | Zbl
[8] L. Ambrosio and A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 123–160 | DOI | MR | Zbl
[9] A. L. Andrianov, “The development of linear programming in L. V. Kantorovich's papers of the 1930s–1950s”, Istor. Mat. Issled. Ser. 2, 15(50), Yanus-K, Moscow, 2014, 25–40 (Russian)
[10] S. Athreya, W. Löhr, and A. Winter, “The gap between Gromov-vague and Gromov–Hausdorff-vague topology”, Stochastic Process. Appl., 126:9 (2016), 2527–2553 | DOI | MR | Zbl
[11] J. Backhoff-Veraguas, D. Bartl, M. Beiglböck, and M. Eder, “Adapted Wasserstein distances and stability in mathematical finance”, Finance Stoch., 24:3 (2020), 601–632 | DOI | MR | Zbl
[12] J. Backhoff-Veraguas, D. Bartl, M. Beiglböck, and M. Eder, “All adapted topologies are equal”, Probab. Theory Related Fields, 178:3-4 (2020), 1125–1172 | DOI | MR | Zbl
[13] J. Backhoff[-Veraguas], D. Bartl, M. Beiglböck, and J. Wiesel, “Estimating processes in adapted Wasserstein distance”, Ann. Appl. Probab., 32:1 (2022), 529–550 | DOI | MR | Zbl
[14] J. Backhoff[-Veraguas], M. Beiglböck, Yiqing Lin, and A. Zalashko, “Causal transport in discrete time and applications”, SIAM J. Optim., 27:4 (2017), 2528–2562 | DOI | MR | Zbl
[15] J. Backhoff-Veraguas, M. Beiglböck, and G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp. | DOI | MR | Zbl
[16] J. Backhoff-Veraguas and G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl
[17] J. Backhoff-Veraguas and G. Pammer, “Stability of martingale optimal transport and weak optimal transport”, Ann. Appl. Probab., 32:1 (2022), 721–752 | DOI | MR | Zbl
[18] M. Barbie and A. Gupta, “The topology of information on the space of probability measures over Polish spaces”, J. Math. Econom., 52 (2014), 98–111 | DOI | MR | Zbl
[19] D. Bartl, P. Cheridito, M. Kupper, and L. Tangpi, “Duality for increasing convex functionals with countably many marginal constraints”, Banach J. Math. Anal., 11:1 (2017), 72–89 | DOI | MR | Zbl
[20] M. Beiglböck, M. Goldstern, G. Maresch, and W. Schachermayer, “Optimal and better transport plans”, J. Funct. Anal., 256:6 (2009), 1907–1927 | DOI | MR | Zbl
[21] M. Beiglböck and N. Juillet, “On a problem of optimal transport under marginal martingale constraints”, Ann. Probab., 44:1 (2016), 42–106 | DOI | MR | Zbl
[22] J.-D. Benamou, G. Carlier, and L. Nenna, “Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm”, Numer. Math., 142:1 (2019), 33–54 | DOI | MR | Zbl
[23] J. Bergin, “On the continuity of correspondences on sets of measures with restricted marginals”, Econom. Theory, 13:2 (1999), 471–481 | DOI | MR | Zbl
[24] S. Bobkov and M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances, Mem. Amer. Math. Soc., 261, no. 1259, Amer. Math. Soc., Providence, RI, 2019, v+126 pp. | DOI | MR | Zbl
[25] V. I. Bogachev, Measure theory, Regulyarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2003, 544 pp., 576 pp.; English transl. v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[26] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[27] V. I. Bogachev, “On sequential properties of spaces of measures”, Mat. Notes, 110:3 (2021), 459–464 ; English transl. in Math. Notes, 110:3 (2021), 449–453 | DOI | MR | Zbl | DOI
[28] V. I. Bogachev, “On approximation of measures by their finite-dimensional images”, Finktsional. Anal. Prilozhen., 55:3 (2021), 75–81 ; English transl. in Funct. Anal. Appl., 55:3 (2021), 236–241 | DOI | Zbl | DOI | MR
[29] V. I. Bogachev, “Kantorovich problems with a parameter and density constraints”, Sibirsk. Mat. Zh., 63:1 (2022), 42–57 ; English transl. in Siberian Math. J., 63:1 (2022), 34–47 | Zbl | DOI | MR
[30] V. I. Bogachev, A. N. Doledenok, and I. I. Malofeev, “The Kantorovich problem with a parameter and density constraints”, Mat. Zametki, 110:6 (2021), 922–926 ; English transl. in Math. Notes, 110:6 (2021), 952–955 | DOI | MR | Zbl | DOI
[31] V. I. Bogachev and A. N. Kalinin, “A continuous cost function for which the minima in the Monge and Kantorovich problems are not equal”, Dokl. Ross. Akad. Nauk, 463:4 (2015), 383–386 ; English transl. in Dokl. Math., 92:1 (2015), 452–455 | MR | Zbl | DOI
[32] V. I. Bogachev, A. N. Kalinin, and S. N. Popova, “On the equality of values in the Monge and Kantorovich problems”, Probability and Statistics. 25, Zap. Nauchn. Sem. POMI, 457, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2017, 53–73 ; English transl. in J. Math. Sci. (N. Y.), 238:4 (2019), 377–389 | MR | Zbl | DOI
[33] V. I. Bogachev and A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Uspekhi Mat. Nauk, 67:5(407) (2012), 3–110 ; English transl. in Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | MR | Zbl | DOI
[34] V. I. Bogachev and I. I. Malofeev, “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 123883, 30 pp. | DOI | MR | Zbl
[35] V. I. Bogachev and I. I. Malofeev, “Nonlinear Kantorovich problems with a parameter”, Izv. Irkutsk. Gos. univ., 41 (2022), 96–106 (Russian) | DOI
[36] V. Bogachev and S. Popova, Optimal transportation of measures with a parameter, 2021, 14 pp., arXiv: 2111.13014
[37] V. I. Bogachev, S. N. Popova, and A. V. Rezbaev, “On nonlinear Kantorovich problems with density constraints”, Moscow Math. J. (to appear)
[38] V. I. Bogachev and A. V. Rezbayev, “Existence of solutions to the nonlinear Kantorovich transportation problem”, Mat. Zametki, 112:3 (2022), 360–370 ; English transl. in Math. Notes, 112:3 (2022), 369–377 | DOI | DOI
[39] V. I. Bogachev and A. V. Shaposhnikov, “Lower bounds for the Kantorovich distance”, Dokl. Ross. Akad. Nauk, 460:6 (2015), 631–633 ; English transl. in Dokl. Math., 91:1 (2015), 91–93 | DOI | MR | Zbl | DOI
[40] V. I. Bogachev, A. V. Shaposhnikov, and F.-Y. Wang, “Sobolev–Kantorovich inequalities under $\operatorname{CD}(0,\infty)$ condition”, Commun. Contemp. Math., 24:5 (2022), 2150027, 27 pp. | DOI | MR | Zbl
[41] V. I. Bogachev, O. G. Smolyanov, and V. I. Sobolev, Topological vector spaces and their applications, Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhavsk, 2012, 584 pp.; English version V. I. Bogachev and O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl
[42] V. I. Bogachev, F.-Y. Wang, and A. V. Shaposhnikov, “Estimates of the Kantorovich norm on manifolds”, Dokl. Ross. Akad. Nauk, 463:6 (2015), 633–638 ; English transl. in Dokl. Math., 92:1 (2015), 494–499 | DOI | MR | Zbl | DOI
[43] V. I. Bogachev, F.-Y. Wang, and A. V. Shaposhnikov, “On inequalities relating the Sobolev and Kantorovich norms”, Dokl. Ross. Akad. Nauk, 468:2 (2016), 131–133 ; English transl. in Dokl. Math., 93:3 (2016), 256–258 | DOI | MR | Zbl | DOI
[44] W. Boyer, B. Brown, A. Loving, and S. Tammen, “Optimal transportation with constant constraint”, Involve, 12:1 (2019), 1–12 | DOI | MR | Zbl
[45] Y. Brenier and D. Vorotnikov, “On optimal transport of matrix-valued measures”, SIAM J. Math. Anal., 52:3 (2020), 2849–2873 | DOI | MR | Zbl
[46] H. Brezis and P. Mironescu, “The Plateau problem from the perspective of optimal transport”, C. R. Math. Acad. Sci. Paris, 357:7 (2019), 597–612 | DOI | MR | Zbl
[47] M. Brückerhoff and N. Juillet, “Instability of martingale optimal transport in dimension $d\ge 2$”, Electron. Commun. Probab., 27 (2022), 24, 10 pp. | DOI | MR | Zbl
[48] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5 (2014), 864–870 | DOI | MR | Zbl
[49] D. B. Bukin, “On the Kantorovich problem for nonlinear images of the Wiener measure”, Mat. Zametki, 100:5 (2016), 682–688 ; English transl. in Math. Notes, 100:5 (2016), 660–665 | DOI | MR | Zbl | DOI
[50] D. B. Bukin and E. P. Krugova, “Transportation costs for optimal and triangular transformations of Gaussian measures”, Theory Stoch. Process., 23:2 (2018), 21–32 | MR | Zbl
[51] G. Buttazzo, T. Champion, and L. De Pascale, “Continuity and estimates for multimarginal optimal transportation problems with singular costs”, Appl. Math. Optim., 78:1 (2018), 185–200 | DOI | MR | Zbl
[52] C. Castaing, P. Raynaud de Fitte, and M. Valadier, Young measures on topological spaces. With applications in control theory and probability theory, Math. Appl., 571, Kluwer Acad. Publ., Dordrecht, 2004, xii+320 pp. | DOI | MR | Zbl
[53] H.-B. Chen and J. Niles-Weed, “Asymptotics of smoothed Wasserstein distances”, Potential Anal., 56:4 (2022), 571–595 | DOI | MR | Zbl
[54] Y. Chen, W. Gangbo, T. T. Georgiou, and A. Tannenbaum, “On the matrix Monge–Kantorovich problem”, European J. Appl. Math., 31:4 (2020), 574–600 | DOI | MR
[55] Y. Chen, T. T. Georgiou, and M. Pavon, “On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint”, J. Optim. Theory Appl., 169:2 (2016), 671–691 | DOI | MR | Zbl
[56] Y. Chen, T. T. Georgiou, and M. Pavon, “Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge”, SIAM Rev., 63:2 (2021), 249–313 | DOI | MR | Zbl
[57] Y. Chen, T. T. Georgiou, and A. Tannenbaum, “Vector-valued optimal mass transport”, SIAM J. Appl. Math., 78:3 (2018), 1682–1696 | DOI | MR | Zbl
[58] P. Cheridito, M. Kiiski, D. J. Prömel, and H. M. Soner, “Martingale optimal transport duality”, Math. Ann., 379:3-4 (2021), 1685–1712 | DOI | MR | Zbl
[59] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, “Unbalanced optimal transport: dynamic and Kantorovich formulations”, J. Funct. Anal., 274:11 (2018), 3090–3123 | DOI | MR | Zbl
[60] K. J. Ciosmak, “Optimal transport of vector measures”, Calc. Var. Partial Differential Equations, 60:6 (2021), 230, 22 pp. | DOI | MR | Zbl
[61] C. Clason, D. A. Lorenz, H. Mahler, and B. Wirth, “Entropic regularization of continuous optimal transport problems”, J. Math. Anal. Appl., 494:1 (2021), 124432, 22 pp. | DOI | MR | Zbl
[62] M. Colombo and S. Di Marino, “Equality between Monge and Kantorovich multimarginal problems with Coulomb cost”, Ann. Mat. Pura Appl. (4), 194:2 (2015), 307–320 | DOI | MR | Zbl
[63] J. Dedecker, C. Prieur, and P. Raynaud De Fitte, “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables”, Dependence in probability and statistics, Lect. Notes Stat., 187, Springer, New York, 2006, 105–121 | DOI | MR | Zbl
[64] A. N. Doledenok, “On a Kantorovich problem with a density constraint”, Mat. Zametki, 104:1 (2018), 45–55 ; English transl. in Math. Notes, 104:1 (2018), 39–47 | DOI | MR | Zbl | DOI
[65] R. Engelking, General topology, Transl. from the Polish, Sigma Ser. Pure Math., 6, 2nd ed., Heldermann Verlag, Berlin, 1989, viii+529 pp. | MR | Zbl
[66] A. Figalli and F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp. | DOI | MR | Zbl
[67] G. Friesecke, “A simple counterexample to the Monge ansatz in multimarginal optimal transport, convex geometry of the set of Kantorovich plans, and the Frenkel–Kontorova model”, SIAM J. Math. Anal., 51:6 (2019), 4332–4355 | DOI | MR | Zbl
[68] G. Friesecke, D. Matthes, and B. Schmitzer, “Barycenters for the Hellinger–Kantorovich distance over $\mathbb{R}^d$”, SIAM J. Math. Anal., 53:1 (2021), 62–110 | DOI | MR | Zbl
[69] A. Galichon, Optimal transport methods in economics, Princeton Univ. Press, Princeton, NJ, 2016, xii+170 pp. | DOI | MR
[70] I. Gentil, C. Léonard, and L. Ripani, “Dynamical aspects of the generalized Schrödinger problem via Otto calculus – a heuristic point of view”, Rev. Mat. Iberoam., 36:4 (2020), 1071–1112 | DOI | MR | Zbl
[71] A. Gerolin, A. Kausamo, and T. Rajala, “Nonexistence of optimal transport maps for the multimarginal repulsive harmonic cost”, SIAM J. Math. Anal., 51:3 (2019), 2359–2371 | DOI | MR | Zbl
[72] M. Ghossoub and D. Saunders, “On the continuity of the feasible set mapping in optimal transport”, Econ. Theory Bull., 9:1 (2021), 113–117 | DOI | MR
[73] N. Ghoussoub, Y.-H. Kim, and T. Lim, “Structure of optimal martingale transport plans in general dimensions”, Ann. Probab., 47:1 (2019), 109–164 | DOI | MR | Zbl
[74] N. Ghoussoub and B. Maurey, “Remarks on multi-marginal symmetric Monge–Kantorovich problems”, Discrete Contin. Dyn. Syst., 34:4 (2014), 1465–1480 | DOI | MR | Zbl
[75] N. A. Gladkov, A. V. Kolesnikov, and A. P. Zimin, “On multistochastic Monge–Kantorovich problem, bitwise operations, and fractals”, Calc. Var. Partial Differential Equations, 58:5 (2019), 173, 33 pp. | DOI | MR | Zbl
[76] N. A. Gladkov, A. V. Kolesnikov, and A. P. Zimin, “The multistochastic Monge–Kantorovich problem”, J. Math. Anal. Appl., 506:2 (2022), 125666, 82 pp. | DOI | MR | Zbl
[77] N. A. Gladkov and A. P. Zimin, “An explicit solution for a multimarginal mass transportation problem”, SIAM J. Math. Anal., 52:4 (2020), 3666–3696 | DOI | MR | Zbl
[78] J. Goubault-Larrecq, “Kantorovich–Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations”, Topology Appl., 295 (2021), 107673, 37 pp. | DOI | MR | Zbl
[79] F. de Gournay, J. Kahn, and L. Lebrat, “Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure”, Numer. Math., 141:2 (2019), 429–453 | DOI | MR | Zbl
[80] N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl
[81] C. Griessler, “$C$-cyclical monotonicity as a sufficient criterion for optimality in the multimarginal Monge–Kantorovich problem”, Proc. Amer. Math. Soc., 146:11 (2018), 4735–4740 | DOI | MR | Zbl
[82] M. Huesmann and D. Trevisan, “A Benamou–Brenier formulation of martingale optimal transport”, Bernoulli, 25:4A (2019), 2729–2757 | DOI | MR | Zbl
[83] M. Iacobelli, “A new perspective on Wasserstein distances for kinetic problems”, Arch. Ration. Mech. Anal., 244:1 (2022), 27–50 | DOI | MR | Zbl
[84] L. Kantorovitch, “On the translocation of masses”, Dokl. Akad. Nauk SSSR, 37:7-8 (1942), 227–229; English transl. in C. R. (Doklady) Acad. Sci. URSS (N. S.), 37 (1942), 199–201 | MR | Zbl
[85] L. V. Kantorovich, Works on mathematics and ecomonics, Selected works, Nauka, Novosibirsk, 2011, 760 pp. (Russian) | Zbl
[86] L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Nauka, Moscow, 1977, 742 pp. ; English transl. Pergamon Press, Oxford–Elmsford, N. Y., 1982, xiv+589 pp. | MR | MR | Zbl
[87] L. V. Kantorovich and G. Sh. Rubinshtein, “On a function space and some extremum problems”, Dokl. Akad. Nauk SSSR, 115:6 (1957), 1058–1061 (Russian) | MR | Zbl
[88] L. V. Kantorovich and G. Sh. Rubinshtein, “On a space of completely additive functions”, Vestn. Leningr. Univ., 13:7 (1958), 52–59 (Russian) | MR | Zbl
[89] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov, “A new optimal transport distance on the space of finite Radon measures”, Adv. Differential Equations, 21:11-12 (2016), 1117–1164 | MR | Zbl
[90] J. Korman and R. J. McCann, “Insights into capacity-constrained optimal transport”, Proc. Natl. Acad. Sci. USA, 110:25 (2013), 10064–10067 | DOI
[91] J. Korman and R. J. McCann, “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR | Zbl
[92] J. Korman, R. J. McCann, and C. Seis, “Dual potentials for capacity constrained optimal transport”, Calc. Var. Partial Differential Equations, 54:1 (2015), 573–584 | DOI | MR | Zbl
[93] J. Korman, R. J. McCann, and C. Seis, “An elementary approach to linear programming duality with application to capacity constrained transport”, J. Convex Anal., 22:3 (2015), 797–808 | MR | Zbl
[94] V. V. Kozlov, “The Monge problem of ‘piles and holes’ on the torus and the problem of small denominators”, Sibirsk. Mat. Zh., 59:6 (2018), 1370–1374 ; English transl. in Siberian Math. J., 59:6 (2018), 1090–1093 | DOI | MR | Zbl | DOI
[95] D. Kramkov and Y. Xu, “An optimal transport problem with backward martingale constraints motivated by insider trading”, Ann. Appl. Probab., 32:1 (2022), 294–326 | DOI | MR | Zbl
[96] S. Kuksin, V. Nersesyan, and A. Shirikyan, “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal., 30:1 (2020), 126–187 | DOI | MR | Zbl
[97] R. Lassalle, “Causal transport plans and their Monge–Kantorovich problems”, Stoch. Anal. Appl., 36:3 (2018), 452–484 | DOI | MR | Zbl
[98] C. Léonard, “From the Schrödinger problem to the Monge–Kantorovich problem”, J. Funct. Anal., 262:4 (2012), 1879–1920 | DOI | MR | Zbl
[99] C. Léonard, “A survey of the Schrödinger problem and some of its connections with optimal transport”, Discrete Contin. Dyn. Syst., 34:4 (2014), 1533–1574 | DOI | MR | Zbl
[100] V. L. Levin and A. A. Milyutin, “The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems”, Uspekhi Mat. Nauk, 34:3(207) (1979), 3–68 ; English transl. in Russian Math. Surveys, 34:3 (1979), 1–78 | MR | Zbl | DOI
[101] M. Liero, A. Mielke, and G. Savaré, “Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures”, Invent. Math., 211:3 (2018), 969–1117 | DOI | MR | Zbl
[102] A. A. Lipchius, “A note on the equality in the Monge and Kantorovich problems”, Teor. Veroyatn. Primenen., 50:4 (2005), 779–782 ; English transl. in Theory Probab. Appl., 50:4 (2006), 689–693 | DOI | MR | Zbl | DOI
[103] C. Liu and A. Neufeld, “Compactness criterion for semimartingale laws and semimartingale optimal transport”, Trans. Amer. Math. Soc., 372:1 (2019), 187–231 | DOI | MR | Zbl
[104] W. Löhr, “Equivalence of Gromov–Prohorov- and Gromov's ${\underline\square}_\lambda$-metric on the space of metric measure spaces”, Electron. Commun. Probab., 18 (2013), 17, 10 pp. | DOI | MR | Zbl
[105] D. A. Lorenz, P. Manns, and C. Meyer, “Quadratically regularized optimal transport”, Appl. Math. Optim., 83:3 (2021), 1919–1949 | DOI | MR | Zbl
[106] A. Marchese, A. Massaccesi, S. Stuvard, and R. Tione, “A multi-material transport problem with arbitrary marginals”, Calc. Var. Partial Differential Equations, 60:3 (2021), 88, 49 pp. | DOI | MR | Zbl
[107] R. J. McCann and L. Rifford, “The intrinsic dynamics of optimal transport”, J. Éc. Polytech. Math., 3 (2016), 67–98 | DOI | MR | Zbl
[108] T. Mikami, Stochastic optimal transportation. Stochastic control with fixed marginals, SpringerBriefs Math., Springer, Singapore, 2021, xi+121 pp. | DOI | MR | Zbl
[109] A. Moameni, “A characterization for solutions of the Monge–Kantorovich mass transport problem”, Math. Ann., 365:3-4 (2016), 1279–1304 | DOI | MR | Zbl
[110] A. Moameni and B. Pass, “Solutions to multi-marginal optimal transport problems concentrated on several graphs”, ESAIM Control Optim. Calc. Var., 23:2 (2017), 551–567 | DOI | MR | Zbl
[111] A. Moameni and L. Rifford, “Uniquely minimizing costs for the Kantorovitch problem”, Ann. Fac. Sci. Toulouse Math. (6), 29:3 (2020), 507–563 | DOI | MR | Zbl
[112] A. Neufeld and J. Sester, “On the stability of the martingale optimal transport problem: a set-valued map approach”, Statist. Probab. Lett., 176 (2021), 109131, 7 pp. | DOI | MR | Zbl
[113] B. Pass, “Multi-marginal optimal transport: theory and applications”, ESAIM Math. Model. Numer. Anal., 49:6 (2015), 1771–1790 | DOI | MR | Zbl
[114] B. W. Pass and A. Vargas-Jiménez, “Multi-marginal optimal transportation problem for cyclic costs”, SIAM J. Math. Anal., 53:4 (2021), 4386–4400 | DOI | MR | Zbl
[115] M. Petrache, “Cyclically monotone non-optimal $N$-marginal transport plans and Smirnov-type decompositions for $N$-flows”, ESAIM Control Optim. Calc. Var., 26 (2020), 120, 11 pp. | DOI | MR | Zbl
[116] G. Ch. Pflug and A. Pichler, Multistage stochastic optimization, Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 2014, xiv+301 pp. | DOI | MR | Zbl
[117] A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. H. Poincaré Probab. Statist., 43:1 (2007), 1–13 | DOI | MR | Zbl
[118] S. T. Rachev and L. Rüschendorf, Mass transportation problems, v. I, Probab. Appl. (N. Y.), Theory, Springer-Verlag, New York, 1998, xxvi+508 pp. ; v. II, Applications, xxvi+430 pp. | DOI | MR | Zbl | DOI | MR
[119] P. Rigo, “A note on duality theorems in mass transportation”, J. Theoret. Probab., 33:4 (2020), 2337–2350 | DOI | MR | Zbl
[120] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp. | DOI | MR | Zbl
[121] A. Savchenko and M. Zarichnyi, “Correspondences of probability measures with restricted marginals”, Proc. Intern. Geom. Center, 7:4 (2014), 34–39 | DOI
[122] B. Schmitzer and B. Wirth, “A framework for Wasserstein-1-type metrics”, J. Convex Anal., 26:2 (2019), 353–396 | MR | Zbl
[123] T. Shioya, Metric measure geometry. Gromov's theory of convergence and concentration of metrics and measures, IRMA Lect. Math. Theor. Phys., 25, EMS Publishing House, Zürich, 2016, xi+182 pp. | DOI | MR | Zbl
[124] V. M. Tikhomirov, “Leonid Vital'evich Kantorovich (to the centennary of his birth)”, Istor. Mat. Issled. Ser. 1, 15(50), Publishing house ‘Janus-K’, РЉ., 2014, 16–24 (Russian)
[125] A. M. Vershik, “Long history of the Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9 | DOI | MR | Zbl
[126] A. M. Vershik, S. S. Kutateladze, and S. P. Novikov, “Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth)”, Uspekhi Mat. Nauk, 67:3(405) (2012), 185–191 ; English transl. in Russian Math. Surveys, 67:3 (2012), 589–597 | DOI | MR | Zbl | DOI
[127] A. M. Vershik, P. B. Zatitskii, and F. V. Petrov, “Virtual continuity of measurable functions and its applications”, Uspekhi Mat. Nauk, 69:6(420) (2014), 81–114 ; English transl. in Russian Math. Surveys, 69:6 (2014), 1031–1063 | DOI | MR | Zbl | DOI
[128] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | DOI | MR | Zbl
[129] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl
[130] J. Wiesel, Continuity of the martingale optimal transport problem on the real line, 2022 (v1 – 2019), 46 pp., arXiv: 1905.04574
[131] G. Wolansky, Optimal transport. A semi-discrete approach, De Gruyter Ser. Nonlinear Anal. Appl., 37, De Gruyter, Berlin, 2021, xii+208 pp. | DOI | Zbl
[132] D. A. Zaev, “On the Monge–Kantorovich problem with additional linear constraints”, Mat. Zametki, 98:5 (2015), 664–683 ; English transl. in Math. Notes, 98:5 (2015), 725–741 | DOI | MR | Zbl | DOI
[133] D. A. Zaev, “On ergodic decompositions related to the Kantorovich problem”, Representation theory, dynamical systems, combinatorial mathods. XXVI, Zap. Nauchn. Sem. POMI, 437, St.-Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2015, 100–130 ; English transl. in J. Math. Sci. (N. Y.), 216:1 (2016), 65–83 | MR | Zbl | DOI
[134] Xicheng Zhang, “Stochastic Monge–Kantorovich problem and its duality”, Stochastics, 85:1 (2013), 71–84 | DOI | MR | Zbl