Kantorovich problem of optimal transportation of measures: new directions of research
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 5, pp. 769-817
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper gives a survey of investigations in the last decade and new results on various recent modifications of the classical Kantorovich problem of the optimal transportation of measures. We discuss in detail nonlinear Kantorovich problems, problems with constraints on the densities of transport plans, and optimal transportation problems with a parameter. In addition, we consider some questions relating to the geometry and topology of spaces of measures connected with these new formulations.
Bibliography: 134 items.
Keywords:
Kantorovich problem, nonlinear Kantorovich problem, Monge problem, Kantorovich metric, conditional measure.
Mots-clés : optimal transportation
Mots-clés : optimal transportation
@article{RM_2022_77_5_a0, author = {V. I. Bogachev}, title = {Kantorovich problem of optimal transportation of measures: new directions of research}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {769--817}, publisher = {mathdoc}, volume = {77}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RM_2022_77_5_a0/} }
TY - JOUR AU - V. I. Bogachev TI - Kantorovich problem of optimal transportation of measures: new directions of research JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 769 EP - 817 VL - 77 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2022_77_5_a0/ LA - en ID - RM_2022_77_5_a0 ER -
V. I. Bogachev. Kantorovich problem of optimal transportation of measures: new directions of research. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 5, pp. 769-817. http://geodesic.mathdoc.fr/item/RM_2022_77_5_a0/