@article{RM_2022_77_4_a7,
author = {A. S. Holevo},
title = {Logarithmic {Sobolev} inequality and {Hypothesis} of {Quantum} {Gaussian} {Maximizers}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {766--768},
year = {2022},
volume = {77},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a7/}
}
A. S. Holevo. Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 766-768. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a7/
[1] V. Giovannetti, A. S. Holevo, and R. García-Patrón, Comm. Math. Phys., 334:3 (2015), 1553–1571 | DOI | MR | Zbl
[2] V. Giovannetti, A. S. Holevo, and A. Mari, Teoret. Mat. Fiz., 182:2 (2015), 338–349 ; English transl. in Theoret. and Math. Phys., 182:2 (2015), 284–293 | DOI | MR | Zbl | DOI
[3] A. S. Holevo, Tr. Mat. Inst. Steklov., 124, Nauka, Moscow, 1976, 3–140 ; English transl. in Proc. Steklov Inst. Math., 124:3 (1978), 1–140 | MR | Zbl | MR
[4] A. S. Holevo, Uspekhi Mat. Nauk, 70:2(422) (2015), 141–180 ; English transl. in Russian Math. Surveys, 70:2 (2015), 331–367 | DOI | MR | Zbl | DOI
[5] A. S. Holevo, J. Math. Phys., 57:1 (2016), 15203, 11 pp. | DOI | MR | Zbl
[6] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, Texts Monogr. Theor. Phys., 2nd ed., De Gruyter, Berlin, 2019, xv+350 pp. | DOI | Zbl
[7] A. Holevo, Entropy, 23:3 (2021), 377, 14 pp. | DOI | MR
[8] A. S. Holevo and A. A. Kuznetsova, J. Phys. A, 53:17 (2020), 175304, 13 pp. | DOI | MR
[9] E. H. Lieb and M. P. Loss, Analysis, Grad. Stud. Math., 14, 2nd ed., Amer. Math. Soc., Providence, RI, 2001, 225–226 (No 8.14) | DOI | MR | Zbl
[10] M. E. Shirokov, Teor. Veroyatn. Primen., 52:2 (2007), 301–335 ; English transl. in Theory Probab. Appl., 52:2 (2008), 250–276 | DOI | MR | Zbl | DOI