Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 759-761 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we announce a result on the possibility of obtaining sufficient conditions for topological conjugacy of gradient-like flows without heteroclinic intersections, given on a connected sum of products $S^{n-1}\times S^1$ in combinatorial terms.
@article{RM_2022_77_4_a5,
     author = {V. Z. Grines and E. Ya. Gurevich},
     title = {Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {759--761},
     year = {2022},
     volume = {77},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a5/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
TI  - Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 759
EP  - 761
VL  - 77
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_4_a5/
LA  - en
ID  - RM_2022_77_4_a5
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%T Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 759-761
%V 77
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2022_77_4_a5/
%G en
%F RM_2022_77_4_a5
V. Z. Grines; E. Ya. Gurevich. Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 759-761. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a5/

[1] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maĭer (Mayer), Qualitative theory of second-order dynamic systems, Nauka, Moscow, 1966, 568 pp. ; English transl. Halsted Press (A division of John Wiley Sons), New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1973, xxiii+524 pp. | MR | Zbl | MR | Zbl

[2] A. A. Andronov and L. S. Pontryagin, Dokl. Akad. Nauk SSSR, 14:5 (1937), 247–250 (Russian) | Zbl

[3] V. Z. Grines and E. Ya. Gurevich, Mat. Zametki, 111:4 (2022), 616–619 ; English transl. in Math. Notes, 111:4 (2022), 624–627 | DOI | Zbl | DOI

[4] V. Z. Grines, E. A. Gurevich, and O. V. Pochinka, Probl. Mat. Anal., 79, Tamara Rozhkovskaya, Novosibirsk, 2015, 73–81 ; English transl. in J. Math. Sci. (N.Y.), 208:1 (2015), 81–90 | MR | Zbl | DOI

[5] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, and O. V. Pochinka, Uspekhi Mat. Nauk, 74:1(445) (2019), 41–116 ; English transl. in Russian Math. Surveys, 74:1 (2019), 37–110 | DOI | MR | Zbl | DOI

[6] J. Palis and S. Smale, Global analysis (Berkeley, Calif. 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 | MR | Zbl

[7] M. M. Peixoto, Ann. of Math. (2), 69 (1959), 199–222 | DOI | MR | Zbl

[8] S. Ju. Piljugin, Differ. Uravn., 14:2 (1978), 245–254 ; English transl. in Differ. Equ., 14 (1978), 170–177 | MR | Zbl

[9] H. Seifert and W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934, iv+353 pp. | Zbl

[10] S. Smale, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[11] Ya. L. Umanskiĭ, Mat. Sb., 181:2 (1990), 212–239 ; English transl. in Math. USSR-Sb., 69:1 (1991), 227–253 | MR | Zbl | DOI

[12] E. V. Zhuzhoma and V. S. Medvedev, Mat. Sb., 207:5 (2016), 69–92 ; English transl. in Sb. Math., 207:5 (2016), 702–723 | DOI | MR | Zbl | DOI