Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 753-755 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2022_77_4_a3,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {Weak solvability of motion models for a~viscoelastic fluid with a~higher-order rheological relation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {753--755},
     year = {2022},
     volume = {77},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a3/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 753
EP  - 755
VL  - 77
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_4_a3/
LA  - en
ID  - RM_2022_77_4_a3
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 753-755
%V 77
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2022_77_4_a3/
%G en
%F RM_2022_77_4_a3
V. G. Zvyagin; V. P. Orlov. Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 753-755. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a3/

[1] A. P. Oskolkov, Boundary-value problems of mathematical physics and related problems of function theory. 9, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 59, Nauka, Leningrad branch, Leningrad, 1976, 133–177 ; English transl. in J. Soviet Math., 10:2 (1978), 299–335 | MR | Zbl | DOI

[2] N. A. Karazeeva, A. A. Cotsiolis, and A. P. Oskolkov, Boundary-value problem of mathematical physics. 14, Tr. Mat. Inst. Steklova, 188, Nauka, Leningrad branch, Leningrad, 1990, 59–87 ; English transl. in Proc. Steklov Inst. Math., 188 (1991), 73–108 | MR | Zbl

[3] V. G. Zvyagin and M. V. Turbin, Mathematical questions in hydrodynamics of viscoelastic media, Krasand, Moscow, 2012, 416 pp. (Russian)

[4] V. G. Litvinov, Operator equations describing the flow of a non-linear viscoelastic fluid, Preprint no. 88.46, Institute of Mathematics of the Academy of Sciences of UkrSSR, Kiev, 1988, 58 pp. (Russian) | MR

[5] V. G. Zvyagin and V. P. Orlov, Sibirsk. Mat. Zh., 59:6 (2018), 1351–1369 ; English transl. in Siberian Math. J., 59:6 (2018), 1073–1089 | DOI | MR | Zbl | DOI

[6] V. G. Zvyagin and V. P. Orlov, J. Math. Fluid Mech., 23:1 (2021), 9, 24 pp. | DOI | MR | Zbl

[7] V. G. Zvyagin and V. P. Orlov, Nonlinear Anal., 172 (2018), 73–98 | DOI | MR | Zbl

[8] V. Zvyagin and V. Orlov, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR

[9] V. Zvyagin and V. Orlov, Discrete Contin. Dyn. Syst. Ser. B, 23:9 (2018), 3855–3877 | DOI | MR | Zbl

[10] A. V. Zvyagin, Uspekhi Mat. Nauk, 74:3(447) (2019), 189–190 ; English transl. in Russian Math. Surveys, 74:3 (2019), 549–551 | DOI | MR | Zbl | DOI

[11] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | Zbl

[12] L. Ambrosio, Invent. Math., 158:2 (2004), 227–260 | DOI | MR | Zbl

[13] G. Crippa and C. de Lellis, J. Reine Angew. Math., 2008:616 (2008), 15–46 | DOI | MR | Zbl