Schubert calculus and intersection theory of flag manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 729-751
Voir la notice de l'article provenant de la source Math-Net.Ru
Hilbert's 15th problem called for a rigorous foundation of Schubert calculus, of which a long-standing and challenging part is the Schubert problem of characteristics. In the course of securing a foundation for algebraic geometry, Van der Waerden and Weil attributed this problem to the intersection theory of flag manifolds.
This article surveys the background, content, and solution of the problem of characteristics. Our main results are a unified formula for the characteristics and a systematic description of the intersection rings of flag manifolds. We illustrate the effectiveness of the formula and the algorithm by explicit examples.
Bibliography: 71 titles.
Keywords:
intersection theory, flag manifolds
Mots-clés : Schubert calculus, Cartan matrix of a Lie group.
Mots-clés : Schubert calculus, Cartan matrix of a Lie group.
@article{RM_2022_77_4_a2,
author = {H. Duan and X. Zhao},
title = {Schubert calculus and intersection theory of flag manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {729--751},
publisher = {mathdoc},
volume = {77},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/}
}
TY - JOUR AU - H. Duan AU - X. Zhao TI - Schubert calculus and intersection theory of flag manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 729 EP - 751 VL - 77 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/ LA - en ID - RM_2022_77_4_a2 ER -
H. Duan; X. Zhao. Schubert calculus and intersection theory of flag manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 729-751. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/