Schubert calculus and intersection theory of flag manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 729-751 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hilbert's 15th problem called for a rigorous foundation of Schubert calculus, of which a long-standing and challenging part is the Schubert problem of characteristics. In the course of securing a foundation for algebraic geometry, Van der Waerden and Weil attributed this problem to the intersection theory of flag manifolds. This article surveys the background, content, and solution of the problem of characteristics. Our main results are a unified formula for the characteristics and a systematic description of the intersection rings of flag manifolds. We illustrate the effectiveness of the formula and the algorithm by explicit examples. Bibliography: 71 titles.
Keywords: intersection theory, flag manifolds
Mots-clés : Schubert calculus, Cartan matrix of a Lie group.
@article{RM_2022_77_4_a2,
     author = {H. Duan and X. Zhao},
     title = {Schubert calculus and intersection theory of flag manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {729--751},
     year = {2022},
     volume = {77},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/}
}
TY  - JOUR
AU  - H. Duan
AU  - X. Zhao
TI  - Schubert calculus and intersection theory of flag manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 729
EP  - 751
VL  - 77
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/
LA  - en
ID  - RM_2022_77_4_a2
ER  - 
%0 Journal Article
%A H. Duan
%A X. Zhao
%T Schubert calculus and intersection theory of flag manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 729-751
%V 77
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/
%G en
%F RM_2022_77_4_a2
H. Duan; X. Zhao. Schubert calculus and intersection theory of flag manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 729-751. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a2/

[1] M. Atiyah and F. Hirzebruch, “Vector bundles and homogeneous spaces”, Differential geometry, Proc. Sympos. Pure Math., III, Amer. Math. Soc., Providence, RI, 1961, 7–38 | DOI | MR | Zbl

[2] H. F. Baker, Principles of geometry, v. 6, Cambridge Univ. Press, Cambridge, 1933, ix+308 pp. | MR | Zbl

[3] P. F. Baum, “On the cohomology of homogeneous spaces”, Topology, 7 (1968), 15–38 | DOI | MR | Zbl

[4] I. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand, “Schubert cells and cohomology of the spaces $G/P$”, Uspekhi Mat. Nauk, 28:3(171) (1973), 3–26 ; English transl. in Russian Math. Surveys, 28:3 (1973), 1–26 | MR | Zbl | DOI

[5] S. Billey and M. Haiman, “Schubert polynomials for the classical groups”, J. Amer. Math. Soc., 8:2 (1995), 443–482 | DOI | MR | Zbl

[6] A. Borel, “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207 | DOI | MR | Zbl

[7] A. Borel, “Kählerian coset spaces of semisimple Lie groups”, Proc. Nat. Acad. Sci. U.S.A., 40:12 (1954), 1147–1151 | DOI | MR | Zbl

[8] A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80:2 (1958), 458–538 | DOI | MR | Zbl

[9] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie, Fasc. XXVI. Ch. 1, Actualités Sci. Indust., 1285, Hermann, Paris, 1960, 144 pp. ; Fasc. XXXVII. Ch. 2, 3, 1349, 1972, 320 pp. ; Fasc. XXXIV. Ch. 4–6, 1337, 1968, 288 pp. ; Fasc. XXXVIII. Ch. 7, 8, 1364, 1975, 271 pp. | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[10] C. B. Boyer, A history of mathematics, John Wiley Sons, Inc., New York–London–Sydney, 1968, xv+717 pp. | MR | Zbl

[11] A. S. Buch, “Mutations of puzzles and equivariant cohomology of two-step flag varieties”, Ann. of Math. (2), 182:1 (2015), 173–220 | DOI | MR | Zbl

[12] A. S. Buch, A. Kresch, K. Purbhoo, and H. Tamvakis, “The puzzle conjecture for the cohomology of two-step flag manifolds”, J. Algebraic Combin., 44:4 (2016), 973–1007 | DOI | MR | Zbl

[13] M. Chasles, “Construction des coniques qui satisfont à cinq conditions”, C. R. Acad. Sci. Paris, 58 (1864), 297–308

[14] C. Chevalley, “Sur les décompositions cellulaires des espaces $G/B$”, Algebraic groups and their generalizations: classical methods (University Park, PA 1991), Proc. Sympos. Pure Math, 56, Part 1, Amer. Math. Soc., Providence, RI, 1994, 1–23 | MR | Zbl

[15] J. L. Coolidge, A history of geometrical methods, Oxford Univ. Press, New York, 1940, xviii+451 pp. | MR | Zbl

[16] I. Coskun, “A Littlewood–Richardson rule for two-step flag varieties”, Invent. Math., 176:2 (2009), 325–395 | DOI | MR | Zbl

[17] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, SINGULAR – A computer algebra system for polynomial computations https://www.singular.uni-kl.de/

[18] Y. Dold-Samplonius, “Interview with Bartel Leendert van der Waerden”, Notices Amer. Math. Soc., 44:3 (1997), 313–320 | MR | Zbl

[19] H. Duan, “The degree of a Schubert variety”, Adv. Math., 180:1 (2003), 112–133 | DOI | MR | Zbl

[20] H. Duan, “Multiplicative rule of Schubert classes”, Invent. Math., 159:2 (2005), 407–436 | DOI | MR | Zbl

[21] H. Duan, “Multiplicative rule in the Grothendieck cohomology of a flag variety”, J. Reine Angew. Math., 2006:600 (2006), 157–176 | DOI | MR | Zbl

[22] H. Duan, “On the Borel transgression in the fibration $G\to G/T$”, Homology Homotopy Appl., 20:1 (2018), 79–86 | DOI | MR | Zbl

[23] H. Duan and B. Li, Topology of blow-ups and enumerative geometry, 2016 (v1 – 2009), 30 pp., arXiv: 0906.4152

[24] H. Duan and X. Zhao, Appendix to “The Chow rings of generalized Grassmannians”, 2007 (v1 – 2005), 27 pp., arXiv: math.AG/0510085

[25] H. Duan and X. Zhao, “Algorithm for multiplying Schubert classes”, Internat. J. Algebra Comput., 16:6 (2006), 1197–1210 ; (2005 (v1 – 2003)), 21 pp., arXiv: math/0309158 | DOI | MR | Zbl

[26] H. Duan and X. Zhao, “A unified formula for Steenrod operations in flag manifolds”, Compos. Math., 143:1 (2007), 257–270 | DOI | MR | Zbl

[27] H. Duan and X. Zhao, Schubert calculus and cohomology of Lie groups. Part I. 1-connected Lie groups, 2015 (v1 – 2007), 32 pp., arXiv: 0711.2541

[28] H. Duan and X. Zhao, “Erratum: Multiplicative rule of Schubert classes”, Invent. Math., 177:3 (2009), 683–684 | DOI | MR | Zbl

[29] H. Duan and X. Zhao, “The Chow rings of generalized Grassmannians”, Found. Math. Comput., 10:3 (2010), 245–274 | DOI | MR | Zbl

[30] H. Duan and X. Zhao, “Schubert calculus and the Hopf algebra structures of exceptional Lie groups”, Forum Math., 26:1 (2014), 113–139 | DOI | MR | Zbl

[31] H. Duan and X. Zhao, “Schubert presentation of the cohomology ring of flag manifolds $G/T$”, LMS J. Comput. Math., 18:1 (2015), 489–506 | DOI | MR | Zbl

[32] H. Duan and X. Zhao, “On Schubert's problem of characteristics”, Schubert calculus and its applications in combinatorics and representation theory, Springer Proc. Math. Stat., 332, Springer, Singapore, 2020, 43–71 | DOI | MR | Zbl

[33] C. Ehresmann, “Sur la topologie de certains espaces homogènes”, Ann. of Math. (2), 35:2 (1934), 396–443 | DOI | MR | Zbl

[34] D. Eisenbud and J. Harris, 3264 and all that. A second course in algebraic geometry, Cambridge Univ. Press, Cambridge, 2016, xiv+616 pp. | DOI | MR | Zbl

[35] S. Fomin, S. Gelfand, and A. Postnikov, “Quantum Schubert polynomials”, J. Amer. Math. Soc., 10:3 (1997), 565–596 | DOI | MR | Zbl

[36] S. Fomin and A. N. Kirillov, “Combinatorial $B_n$-analogues of Schubert polynomials”, Trans. Amer. Math. Soc., 348:9 (1996), 3591–3620 | DOI | MR | Zbl

[37] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp. | DOI | MR | Zbl

[38] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer, Berlin, 1998, xiv+470 pp. | DOI | MR | Zbl

[39] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Math., 1689, Springer-Verlag, Berlin, 1998, xii+148 pp. | DOI | MR | Zbl

[40] G. Z. Giambelli, “Risoluzione del probema degli spazi secanti”, Mem. Accad. Sci. Torino (2), 52 (1903), 171–211 | Zbl

[41] D. R. Grayson, A. Seceleanu, and M. E. Stillman, Computations in intersection rings of flag bundles, 2022 (v1 – 2012), 37 pp., arXiv: 1205.4190

[42] D. Grayson and A. Stillman, Macaulay2: a software system for research in algebraic geometry http://math.uiuc.edu/Macaulay2

[43] D. Hilbert, “Mathematical problems”, Bull. Amer. Math. Soc., 8:10 (1902), 437–479 | DOI | MR | Zbl

[44] D. Husemoller, J. C. Moore, and J. Stasheff, “Differential homological algebra and homogeneous spaces”, J. Pure Appl. Algebra, 5:2 (1974), 113–185 | DOI | MR | Zbl

[45] S. Katz, Enumerative geometry and string theory, Stud. Math. Libr., 32, Amer. Math. Soc., Providence, RI, 2006, xiv+206 pp. | DOI | MR | Zbl

[46] A. N. Kirillov and H. Naruse, “Construction of double Grothendieck polynomials of classical types using IdCoxeter algebras”, Tokyo J. Math., 39:3 (2017), 695–728 | DOI | MR | Zbl

[47] S. L. Kleiman, “Problem 15: rigorous foundation of Schubert's enumerative calculus”, Mathematical developments arising from Hilbert problems (Northern Illinois Univ., De Kalb, IL 1974), Proc. Sympos. Pure Math., 28, Amer. Math. Soc., Providence, RI, 1976, 445–482 | DOI | MR | Zbl

[48] S. L. Kleiman, “Book review: W. Fulton ‘Intersection theory’ // W. Fulton ‘Introduction to intersection theory in algebraic geometry’”, Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 137–143 | DOI | MR

[49] S. L. Kleiman, “Intersection theory and enumerative geometry: a decade in review”, With the collaboration of A. Thorup, Algebraic geometry, Bowdoin 1985, Part 2 (Brunswick, ME 1985), Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, 321–370 | DOI | MR | Zbl

[50] L. Lascoux and M. P. Schützenberger, “Polynômes de Schubert”, C. R. Acad. Sci. Paris Sér. I Math., 294:13 (1982), 447–450 | MR | Zbl

[51] S. Lefschetz, “Intersections and transformations of complexes and manifolds”, Trans. Amer. Math. Soc., 28:1 (1926), 1–49 | DOI | MR | Zbl

[52] D. E. Littlewood and A. R. Richardson, “Group characters and algebra”, Philos. Trans. Roy. Soc. London Ser. A, 233 (1934), 99–141 | DOI | Zbl

[53] Ju. I. Manin, Hilbert's problems, Nauka, Moscow, 1969, 175–181 (Russian) | MR

[54] R. Marlin, “Anneaux de Chow des groupes algébriques $\operatorname{SU}(n)$, $\operatorname{Sp}(n)$, $\operatorname{SO}(n)$, $\operatorname{Spin}(n)$, $\mathrm G_{2}$, $\mathrm F_{4}$; torsion”, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 119–122 | MR | Zbl

[55] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1974, vii+331 pp. | DOI | MR | Zbl

[56] S. I. Nikolenko and N. S. Semenov, Chow ring structure made simple, 2006, 17 pp., arXiv: math.AG/0606335

[57] J. Scherk, Algebra. A computational introduction, Stud. Adv. Math., Chapman Hall/CRC, Boca Raton, FL, 2000, x+319 pp. | MR | Zbl

[58] H. Schubert, “Zur Theorie der Charakteristiken”, J. Reine Angew. Math., 1870:71 (1870), 366–386 | DOI | MR | Zbl

[59] H. Schubert, “Anzahl-Bestimmungen für lineare Räume. Beliebiger Dimension”, Acta Math., 8 (1886), 97–118 | DOI | MR | Zbl

[60] H. Schubert, “Lösung des Characteristiken-Problems für lineare Räume beliebiger Dimension”, Mitt. Math. Ges. Hamburg, 1 (1886), 134–155 | Zbl

[61] H. Schubert, Kalkül der abzählenden Geometrie, Reprint of the 1879 original, Springer-Verlag, Berlin–New York, 1979, 349 pp. | MR | Zbl

[62] F. Severi, “Sul principio della conservazione del numero”, Rend. Circ. Mat. Palermo, 33 (1912), 313–327 | DOI | Zbl

[63] F. Severi, “Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche”, Atti Ist. Veneto Sci. Lett. Art., 75 (1916), 1121–1162 | Zbl

[64] E. Smirnov and A. Tutubalina, Pipe dreams for Schubert polynomials of the classical groups, 2020, 36 pp., arXiv: 2009.14120

[65] F. Sottile, Schubert calculus, Springer Encyclopedia of Mathematics, 2012 http://encyclopediaofmath.org/index.php?title=Schubert_calculus& oldid=23715

[66] H. Tamvakis, “Giambelli and degeneracy locus formulas for classical $G/P$ spaces”, Mosc. Math. J., 16:1 (2016), 125–177 | DOI | MR | Zbl

[67] H. Toda, “On the cohomology ring of some homogeneous spaces”, J. Math. Kyoto Univ., 15 (1975), 185–199 | DOI | MR | Zbl

[68] B. L. van der Waerden, “Topologische Begründung des Kalküls der abzählenden Geometrie”, Math. Ann., 102:1 (1930), 337–362 | DOI | MR | Zbl

[69] B. L. van der Waerden, “The foundation of algebraic geometry from Severi to André Weil”, Arch. History Exact Sci., 7:3 (1971), 171–180 | DOI | MR | Zbl

[70] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., XXIV, Rev. ed., Amer. Math. Soc., Providence, RI, 1962, xx+363 pp. | MR | Zbl

[71] J. Wolf, “The cohomology of homogeneous spaces”, Amer. J. Math., 99:2 (1977), 312–340 | DOI | MR | Zbl