Mots-clés : affine space, algebraic group, quadric
@article{RM_2022_77_4_a0,
author = {I. V. Arzhantsev and Yu. I. Zaitseva},
title = {Equivariant completions of affine spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {571--650},
year = {2022},
volume = {77},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a0/}
}
I. V. Arzhantsev; Yu. I. Zaitseva. Equivariant completions of affine spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 571-650. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a0/
[1] K. Altmann and J. Hausen, “Polyhedral divisors and algebraic torus actions”, Math. Ann., 334:3 (2006), 557–607 | DOI | MR | Zbl
[2] K. Altmann, J. Hausen, and H. Süss, “Gluing affine torus actions via divisorial fans”, Transform. Groups, 13:2 (2008), 215–242 | DOI | MR | Zbl
[3] I. V. Arzhantsev, “Flag varieties as equivariant compactifications of $\mathbb{G}_a^n$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786 | DOI | MR | Zbl
[4] I. Arzhantsev, “Limit points and additive group actions”, Ric. Mat., 2021, 1–10, Publ. online | DOI
[5] I. Arzhantsev, S. Bragin, and Yu. Zaitseva, “Commutative algebraic monoid structures on affine spaces”, Commun. Contemp. Math., 22:8 (2020), 1950064, 23 pp. | DOI | MR | Zbl
[6] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface, Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015, viii+530 pp. | DOI | MR | Zbl
[7] I. Arzhantsev and S. Gaifullin, “The automorphism group of a rigid affine variety”, Math. Nachr., 290:5-6 (2017), 662–671 | DOI | MR | Zbl
[8] I. Arzhantsev and P. Kotenkova, “Equivariant embeddings of commutative linear algebraic groups of corank one”, Doc. Math., 20 (2015), 1039–1053 | MR | Zbl
[9] I. Arzhantsev, A. Perepechko, and H. Süß, “Infinite transitivity on universal torsors”, J. Lond. Math. Soc. (2), 89:3 (2014), 762–778 | DOI | MR | Zbl
[10] I. Arzhantsev and A. Popovskiy, “Additive actions on projective hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 17–33 | DOI | MR | Zbl
[11] I. Arzhantsev and E. Romaskevich, “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879 | DOI | MR | Zbl
[12] I. Arzhantsev and E. Sharoyko, “Hassett–Tschinkel correspondence: modality and projective hypersurfaces”, J. Algebra, 348:1 (2011), 217–232 | DOI | MR | Zbl
[13] I. V. Arzhantsev, M. G. Zaidenberg, and K. G. Kuyumzhiyan, “Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity”, Mat. Sb., 203:7 (2012), 3–30 ; English transl. in Sb. Math., 203:7 (2012), 923–949 | DOI | MR | Zbl | DOI
[14] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, ON, 1969, ix+128 pp. | MR | Zbl
[15] J. Barria and P. R. Halmos, “Vector bases for two commuting matrices”, Linear Multilinear Algebra, 27:3 (1990), 147–157 | DOI | MR | Zbl
[16] R. Basili, A. Iarrobino, and L. Khatami, “Commuting nilpotent matrices and Artinian algebras”, J. Commut. Algebra, 2:3 (2010), 295–325 | DOI | MR | Zbl
[17] I. Bazhov, “On orbits of the automorphism group on a complete toric variety”, Beitr. Algebra Geom., 54:2 (2013), 471–481 | DOI | MR | Zbl
[18] I. Bazhov, Additive structures on cubic hypersurfaces, 2013, 8 pp., arXiv: 1307.6085
[19] F. Berchtold, “Lifting of morphisms to quotient presentations”, Manuscripta Math., 110:1 (2003), 33–44 | DOI | MR | Zbl
[20] V. Borovik, S. Gaifullin, and A. Trushin, “Commutative actions on smooth projective quadrics”, Comm. Algebra, 2022, 1–8, Publ. online ; 2020, 8 pp., arXiv: 2011.08514 | DOI
[21] W. C. Brown, “Constructing maximal commutative subalgebras of matrix rings in small dimensions”, Comm. Algebra, 25:12 (1997), 3923–3946 | DOI | MR | Zbl
[22] W. C. Brown and F. W. Call, “Maximal commutative subalgebras of $n \times n$ matrices”, Comm. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl
[23] W. Bruns and J. Gubeladze, “Polytopal linear groups”, J. Algebra, 218:2 (1999), 715–737 | DOI | MR | Zbl
[24] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp. | DOI | MR | Zbl
[25] P. Caldero, “Toric degenerations of Schubert varieties”, Transform. Groups, 7:1 (2002), 51–60 | DOI | MR | Zbl
[26] G. Casnati, “Isomorphism types of Artinian Gorenstein local algebras of multiplicity at most $9$”, Comm. Algebra, 38:8 (2010), 2738–2761 | DOI | MR | Zbl
[27] G. Cerulli Irelli, E. Feigin, and M. Reineke, “Quiver Grassmannians and degenerate flag varieties”, Algebra Number Theory, 6:1 (2012), 165–194 | DOI | MR | Zbl
[28] A. Chambert-Loir and Yu. Tschinkel, “On the distribution of points of bounded height on equivariant compactifications of vector groups”, Invent. Math., 148:2 (2002), 421–452 | DOI | MR | Zbl
[29] A. Chambert-Loir and Yu. Tschinkel, “Integral points of bounded height on partial equivariant compactifications of vector groups”, Duke Math. J., 161:15 (2012), 2799–2836 | DOI | MR | Zbl
[30] B. Charles, “Sur la permutabilité des opérateurs linéaires”, C. R. Acad. Sci. Paris, 236 (1953), 1722–1723 | MR | Zbl
[31] B. Charles, “Un critère de maximalité pour les anneaux commutatifs d'opérateurs linéaires”, C. R. Acad. Sci. Paris, 236 (1953), 1835–1837 | MR | Zbl
[32] B. Charles, “Sur l'algèbre des opérateurs linéaires”, J. Math. Pures Appl. (9), 33 (1954), 81–145 | MR | Zbl
[33] I. Cheltsov, J. Park, Yu. Prokhorov, and M. Zaidenberg, “Cylinders in Fano varieties”, EMS Surv. Math. Sci., 8:1-2 (2021), 39–105 | DOI | MR | Zbl
[34] D. Cheong, “Equivariant compactifications of a nilpotent group by $G/P$”, Transform. Groups, 22:1 (2017), 163–186 | DOI | MR | Zbl
[35] R. C. Courter, “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32:2 (1965), 225–232 | DOI | MR | Zbl
[36] D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl
[37] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl
[38] M. Demazure, “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3:4 (1970), 507–588 | DOI | MR | Zbl
[39] U. Derenthal and D. Loughran, “Singular del Pezzo surfaces that are equivariant compactifications”, Studies in Number Theory. Part 10, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 377, St Petersburg Department of Steklov Mathematical Institute, St Petersburg, 2010, 26–43 ; J. Math. Sci. (N. Y.), 171:6 (2010), 714–724 | MR | Zbl | DOI
[40] U. Derenthal and D. Loughran, “Equivariant compactifications of two-dimensional algebraic groups”, Proc. Edinb. Math. Soc. (2), 58:1 (2015), 149–168 | DOI | MR | Zbl
[41] R. Devyatov, “Unipotent commutative group actions on flag varieties and nilpotent multiplications”, Transform. Groups, 20:1 (2015), 21–64 | DOI | MR | Zbl
[42] S. Dzhunusov, “On uniqueness of additive actions on complete toric varieties”, J. Algebra, 2022, 1–11, Publ. online ; 2020, 12 pp., arXiv: 2007.10113 | DOI
[43] S. Dzhunusov, “Additive actions on complete toric surfaces”, Internat. J. Algebra Comput., 31:1 (2021), 19–35 | DOI | MR | Zbl
[44] J. Elias and G. Valla, “Isomorphism classes of certain Artinian Gorenstein algebras”, Algebr. Represent. Theory, 14:3 (2011), 429–448 | DOI | MR | Zbl
[45] E. Feigin, “$\mathbb{G}^M_a$ degeneration of flag varieties”, Selecta Math. (N. S.), 18:3 (2012), 513–537 | DOI | MR | Zbl
[46] E. Feigin and M. Finkelberg, “Degenerate flag varieties of type A: Frobenius splitting and BW theorem”, Math. Z., 275:1-2 (2013), 55–77 | DOI | MR | Zbl
[47] H. Flenner and M. Zaidenberg, “On the uniqueness of $\mathbb{C}^*$-actions on affine surfaces”, Affine algebraic geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 97–111 | DOI | MR | Zbl
[48] F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergeb. Math. Grenzgeb. (3), 56, Springer, Heidelberg, 2011, xii+489 pp. | DOI | MR | Zbl
[49] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory and Algebraic Transformation Groups, VII, 2nd ed., Springer-Verlag, Berlin, 2017, xxii+319 pp. | DOI | MR | Zbl
[50] G. Frobenius, “Über vertauschbare Matrizen”, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1896 (1896), 601–614 | Zbl
[51] B. Fu and J.-M. Hwang, “Uniqueness of equivariant compactifications of $\mathbb{C}^n$ by a Fano manifold of Picard number 1”, Math. Res. Lett., 21:1 (2014), 121–125 | DOI | MR | Zbl
[52] B. Fu and J.-M. Hwang, “Special birational transformations of type $(2,1)$”, J. Algebraic Geom., 27:1 (2018), 55–89 | DOI | MR | Zbl
[53] B. Fu and J.-M. Hwang, “Euler-symmetric projective varieties”, Algebr. Geom., 7:3 (2020), 377–389 | DOI | MR | Zbl
[54] B. Fu and P. Montero, “Equivariant compactifications of vector groups with high index”, C. R. Math. Acad. Sci. Paris, 357:5 (2019), 455–461 | DOI | MR | Zbl
[55] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl
[56] M. Furushima, “The complete classification of compactifications of $\mathbb{C}^3$ which are projective manifolds with the second Betti number one”, Math. Ann., 297:4 (1993), 627–662 | DOI | MR | Zbl
[57] M. Gerstenhaber, “On dominance and varieties of commuting matrices”, Ann. of Math. (2), 73:2 (1961), 324–348 | DOI | MR | Zbl
[58] N. Gonciulea and V. Lakshmibai, “Degenerations of flag and Schubert varieties to toric varieties”, Transform. Groups, 1:3 (1996), 215–248 | DOI | MR | Zbl
[59] M. Gromov, “Oka's principle for holomorphic sections of elliptic bundles”, J. Amer. Math. Soc., 2:4 (1989), 851–897 | DOI | MR | Zbl
[60] R. M. Guralnick and B. A. Sethuraman, “Commuting pairs and triples of matrices and related varieties”, Linear Algebra Appl., 310:1-3 (2000), 139–148 | DOI | MR | Zbl
[61] D. Handelman, Commutative nilpotent matrix subalgebras, Master Thesis, Faculty of Graduate Studies and Research, Dep. of Math., McGill Univ., Montreal, 1973
[62] B. Hassett and Yu. Tschinkel, “Geometry of equivariant compactifications of $\mathbf{G}_a^n$”, Int. Math. Res. Not. IMRN, 1999:22 (1999), 1211–1230 | DOI | MR | Zbl
[63] J. Hausen and T. Hummel, The automorphism group of a rational projective $\mathbb{K}^*$-surface, 2020, 64 pp., arXiv: 2010.06414
[64] F. Hirzebruch, “Some problems on differentiable and complex manifolds”, Ann. of Math. (2), 60:2 (1954), 213–236 | DOI | MR | Zbl
[65] Z. Huang and P. Montero, “Fano threefolds as equivariant compactifications of the vector group”, Michigan Math. J., 69:2 (2020), 341–368 | DOI | MR | Zbl
[66] J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math., 21, Springer-Verlag, New York–Heidelberg, 1975, xiv+247 pp. | DOI | MR | Zbl
[67] V. Hussin, P. Winternitz, and H. Zassenhaus, “Maximal abelian subalgebras of complex orthogonal Lie algebras”, Linear Algebra Appl., 141 (1990), 183–220 | DOI | MR | Zbl
[68] J.-M. Hwang, “Geometry of minimal rational curves on Fano manifolds”, School on vanishing theorems and effective results in algebraic geometry (Trieste 2000), ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, 335–393 | MR | Zbl
[69] A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc., 10, no. 188, Amer. Math. Soc., Providence, RI, 1977, viii+112 pp. | MR | Zbl
[70] A. Iarrobino, “Hilbert scheme of points: overview of last ten years”, Algebraic geometry, Bowdoin 1985 (Brunswick, ME 1985), Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, 297–320 | DOI | MR | Zbl
[71] A. A. Iarrobino, Associated graded algebra of a Gorenstein Artin algebra, Mem. Amer. Math. Soc., 107, No 514, Amer. Math. Soc., Providence, RI, 1994, viii+115 pp. | DOI | MR | Zbl
[72] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Math., 1721, Springer-Verlag, Berlin, 1999, xxxii+345 pp. | DOI | MR | Zbl
[73] N. Jacobson, “Schur's theorems on commutative matrices”, Bull. Amer. Math. Soc., 50:6 (1944), 431–436 | DOI | MR | Zbl
[74] J. Jelisiejew, “Classifying local Artinian Gorenstein algebras”, Collect. Math., 68:1 (2017), 101–127 | DOI | MR | Zbl
[75] F. Knop, H. Kraft, D. Luna, and T. Vust, “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | DOI | MR | Zbl
[76] F. Knop and H. Lange, “Commutative algebraic groups and intersections of quadrics”, Math. Ann., 267:4 (1984), 555–571 | DOI | MR | Zbl
[77] T. J. Laffey, “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR | Zbl
[78] T. J. Laffey and S. Lazarus, “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273 | DOI | MR | Zbl
[79] V. Lakshmibai, “Degenerations of flag varieties to toric varieties”, C. R. Acad. Sci. Paris Sér. I Math., 321:9 (1995), 1229–1234 | MR | Zbl
[80] A. Liendo, “Affine $\mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425 | DOI | MR | Zbl
[81] A. Liendo and C. Petitjean, “Uniformly rational varieties with torus action”, Transform. Groups, 24:1 (2019), 149–153 | DOI | MR | Zbl
[82] Y. Liu, “Additive actions on hyperquadrics of corank two”, Electron. Res. Arch., 30:1 (2022), 1–34 | DOI | MR | Zbl
[83] K. Loginov, “Hilbert–Samuel sequences of homogeneous finite type”, J. Pure Appl. Algebra, 221:4 (2017), 821–831 | DOI | MR | Zbl
[84] D. Luna and Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245 | DOI | MR | Zbl
[85] Z. Luo, Euler-symmetric complete intersections in projective space, 2022, 16 pp., arXiv: 2203.16068
[86] F. S. Macaulay, The algebraic theory of modular systems, Cambridge Univ. Press, Cambridge, 1916, xiv+112 pp. ; With an introduction by P. Roberts, Rev. reprint of the 1916 original, Cambridge Univ. Press, Cambridge, 1994, xxxii+112 pp. | Zbl | MR | Zbl
[87] H. Matsumura and P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3:3 (1963/64), 347–361 | DOI | MR | Zbl
[88] G. Mazzola, “Generic finite schemes and Hochschild cocycles”, Comment. Math. Helv., 55 (1980), 267–293 | DOI | MR | Zbl
[89] M. Nagaoka, “$\mathbb{G}_a^3$-structures on del Pezzo fibrations”, Michigan Math. J., 2021, 1–10, Publ. online | DOI
[90] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., 18, Amer. Math. Soc., Providence, RI, 1999, xii+132 pp. | DOI | MR | Zbl
[91] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Transl. from the Japan., Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl
[92] A. L. Oniščik (Onishchik), “Inclusion relations among transitive compact transformation groups”, Tr. Mosk. Mat. Obshch., 11, GIFML, Moscow, 1962, 199–242 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 50, Amer. Math. Soc., Providence, RI, 1966, 5–58 | MR | Zbl | DOI
[93] E. Peyre, “Points de hauteur bornée et géométrie des variétés (d'après Y. Manin et al.)”, Séminaire Bourbaki, v. 2000/2001, Astérisque, 282, Soc. Math. France, Paris, 2002, Exp. No. 891, ix, 323–344 | MR | Zbl
[94] B. Poonen, “Isomorphism types of commutative algebras of finite rank over an algebraically closed field”, Computational arithmetic geometry, Contemp. Math., 463, Amer. Math. Soc., Providence, RI, 2008, 111–120 | DOI | MR | Zbl
[95] È. B. Vinberg and V. L. Popov, “Invariant theory”, Algebraic geometry – 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 55, VINITI, Moscow, 1989, 137–309 ; English transl. in Algebraic geometry. IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–284 | MR | Zbl | DOI | MR | Zbl
[96] Yu. Prokhorov and M. Zaidenberg, “Fano–Mukai fourfolds of genus 10 as compactifications of $\mathbb{C}^4$”, Eur. J. Math., 4:3 (2018), 1197–1263 | DOI | MR | Zbl
[97] R. Richardson, G. Röhrle, and R. Steinberg, “Parabolic subgroups with Abelian unipotent radical”, Invent. Math., 110:3 (1992), 649–671 | DOI | MR | Zbl
[98] I. Schur, “Zur Theorie der vertauschbären Matrizen”, J. Reine Angew. Math., 1905:130 (1905), 66–76 | DOI | MR | Zbl
[99] A. Shafarevich, “Additive actions on toric projective hypersurfaces”, Results Math., 76:3 (2021), 145, 18 pp. | DOI | MR | Zbl
[100] A. Shafarevich, “Euler-symmetric projective toric varieties and additive actions”, Indag. Math., 34:1 (2023), 42-53 | DOI
[101] K. V. Shakhmatov, “Smooth nonprojective equivariant completions of affine space”, Mat. Zametki, 109:6 (2021), 929–937 ; English transl. in Math. Notes, 109:6 (2021), 954–961 | DOI | MR | Zbl | DOI
[102] J. Shalika and Yu. Tschinkel, “Height zeta functions of equivariant compactifications of unipotent groups”, Comm. Pure Appl. Math., 69:4 (2016), 693–733 | DOI | MR | Zbl
[103] E. V. Sharoiko, “Hassett–Tschinkel correspondence and automorphisms of the quadric”, Mat. Sb., 200:11 (2009), 145–160 ; English transl. in Sb. Math., 200:11 (2009), 1715–1729 | DOI | MR | Zbl | DOI
[104] Y.-K. Song, “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250 | DOI | MR | Zbl
[105] D. A. Suprunenko and R. I. Tyshkevich, Commutative matrices, Nauka i Tekhnika, Minsk, 1966, 104 pp. ; English transl. Academic Press, New York, 1968, viii+158 pp. | MR | Zbl
[106] S. Tanimoto and Yu. Tschinkel, “Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups”, Zeta functions in algebra and geometry, Contemp. Math., 566, Amer. Math. Soc., Providence, RI, 2012, 119–157 | DOI | MR | Zbl
[107] D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp. | DOI | MR | Zbl
[108] J. Tits, “Espaces homogènes complexes compacts”, Comment. Math. Helv., 37 (1962), 111–120 | DOI | MR | Zbl
[109] A. R. Wadsworth, “The algebra generated by two commuting matrices”, Linear Multilinear Algebra, 27:3 (1990), 159–162 | DOI | MR | Zbl