Equivariant completions of affine spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 571-650
Voir la notice de l'article provenant de la source Math-Net.Ru
We survey recent results on open embeddings of the affine space $\mathbb{C}^n$ into a complete algebraic variety $X$ such that the action of the vector group $\mathbb{G}_a^n$ on $\mathbb{C}^n$ by translations extends to an action of $\mathbb{G}_a^n$ on $X$. We begin with the Hassett–Tschinkel correspondence describing equivariant embeddings of $\mathbb{C}^n$ into projective spaces and present its generalization for embeddings into projective hypersurfaces. Further sections deal with embeddings into flag varieties and their degenerations, complete toric varieties, and Fano varieties of certain types.
Bibliography: 109 titles.
Keywords:
algebraic variety, additive action, local algebra, projective space, flag variety, grading, locally nilpotent derivation, toric variety, Cox ring, Demazure root.
Mots-clés : affine space, algebraic group, quadric
Mots-clés : affine space, algebraic group, quadric
@article{RM_2022_77_4_a0,
author = {I. V. Arzhantsev and Yu. I. Zaitseva},
title = {Equivariant completions of affine spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {571--650},
publisher = {mathdoc},
volume = {77},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_4_a0/}
}
TY - JOUR AU - I. V. Arzhantsev AU - Yu. I. Zaitseva TI - Equivariant completions of affine spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 571 EP - 650 VL - 77 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2022_77_4_a0/ LA - en ID - RM_2022_77_4_a0 ER -
I. V. Arzhantsev; Yu. I. Zaitseva. Equivariant completions of affine spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 4, pp. 571-650. http://geodesic.mathdoc.fr/item/RM_2022_77_4_a0/