@article{RM_2022_77_3_a5,
author = {A. B. Kupavskii and A. A. Sagdeev and N. Frankl},
title = {Infinite sets can be {Ramsey} in the {Chebyshev} metric},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {549--551},
year = {2022},
volume = {77},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/}
}
TY - JOUR AU - A. B. Kupavskii AU - A. A. Sagdeev AU - N. Frankl TI - Infinite sets can be Ramsey in the Chebyshev metric JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 549 EP - 551 VL - 77 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/ LA - en ID - RM_2022_77_3_a5 ER -
A. B. Kupavskii; A. A. Sagdeev; N. Frankl. Infinite sets can be Ramsey in the Chebyshev metric. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 549-551. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/
[1] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., John Wiley Sons, Inc., New York, 1990, xii+196 pp. | MR | Zbl
[2] A. M. Raigorodskii, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460 | DOI | MR | Zbl
[3] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, J. Combin. Theory Ser. A, 14:3 (1973), 341–363 | DOI | MR | Zbl
[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Infinite and finite sets (Keszthely 1973), Colloq. Math. Soc. János Bolyai, 10, North-Holland, Amsterdam, 1975, 529–557, 559–583 | MR | MR | Zbl
[5] I. Leader, P. A. Russell, and M. Walters, J. Combin. Theory Ser. A., 119:2 (2012), 382–396 | DOI | MR | Zbl
[6] P. Frankl and V. Rödl, J. Amer. Math. Soc., 3:1 (1990), 1–7 | DOI | MR | Zbl
[7] I. Kříž, Proc. Amer. Math. Soc., 112:3 (1991), 899–907 | DOI | MR | Zbl
[8] R. I. Prosanov, Mat. Zametki, 103:2 (2018), 248–257 ; English transl. in Math. Notes, 103:2 (2018), 243–250 | DOI | MR | Zbl | DOI
[9] A. A. Sagdeev, Problemy Peredach Informatsii, 54:4 (2018), 82–109 ; English transl. in Problems Inform. Transmission, 54:4 (2018), 372–396 | MR | Zbl | DOI
[10] A. A. Sagdeev, Problemy Peredachi Infornatsii, 55:4 (2019), 86–106 ; English transl. in Problems Inform. Transmission, 55:4 (2019), 376–395 | MR | Zbl | DOI
[11] E. Naslund, Bull. Lond. Math. Soc., 52:4 (2020), 687–692 | DOI | MR | Zbl
[12] D. Conlon and J. Fox, Discrete Comput. Geom., 61:1 (2019), 218–225 | DOI | MR | Zbl
[13] A. B. Kupavskii and A. A. Sagdeev, Uspekhi Mat. Nauk, 75:5(455) (2020), 191–192 ; English transl. in Russian Math. Surveys, 75:5 (2020), 965–967 | DOI | MR | Zbl | DOI
[14] A. Kupavskii and A. Sagdeev, Forum Math. Sigma, 9 (2021), e55, 12 pp. | DOI | MR | Zbl