Infinite sets can be Ramsey in the Chebyshev metric
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 549-551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2022_77_3_a5,
     author = {A. B. Kupavskii and A. A. Sagdeev and N. Frankl},
     title = {Infinite sets can be {Ramsey} in the {Chebyshev} metric},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {549--551},
     year = {2022},
     volume = {77},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. A. Sagdeev
AU  - N. Frankl
TI  - Infinite sets can be Ramsey in the Chebyshev metric
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 549
EP  - 551
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/
LA  - en
ID  - RM_2022_77_3_a5
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. A. Sagdeev
%A N. Frankl
%T Infinite sets can be Ramsey in the Chebyshev metric
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 549-551
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/
%G en
%F RM_2022_77_3_a5
A. B. Kupavskii; A. A. Sagdeev; N. Frankl. Infinite sets can be Ramsey in the Chebyshev metric. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 549-551. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/

[1] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., John Wiley Sons, Inc., New York, 1990, xii+196 pp. | MR | Zbl

[2] A. M. Raigorodskii, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460 | DOI | MR | Zbl

[3] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, J. Combin. Theory Ser. A, 14:3 (1973), 341–363 | DOI | MR | Zbl

[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Infinite and finite sets (Keszthely 1973), Colloq. Math. Soc. János Bolyai, 10, North-Holland, Amsterdam, 1975, 529–557, 559–583 | MR | MR | Zbl

[5] I. Leader, P. A. Russell, and M. Walters, J. Combin. Theory Ser. A., 119:2 (2012), 382–396 | DOI | MR | Zbl

[6] P. Frankl and V. Rödl, J. Amer. Math. Soc., 3:1 (1990), 1–7 | DOI | MR | Zbl

[7] I. Kříž, Proc. Amer. Math. Soc., 112:3 (1991), 899–907 | DOI | MR | Zbl

[8] R. I. Prosanov, Mat. Zametki, 103:2 (2018), 248–257 ; English transl. in Math. Notes, 103:2 (2018), 243–250 | DOI | MR | Zbl | DOI

[9] A. A. Sagdeev, Problemy Peredach Informatsii, 54:4 (2018), 82–109 ; English transl. in Problems Inform. Transmission, 54:4 (2018), 372–396 | MR | Zbl | DOI

[10] A. A. Sagdeev, Problemy Peredachi Infornatsii, 55:4 (2019), 86–106 ; English transl. in Problems Inform. Transmission, 55:4 (2019), 376–395 | MR | Zbl | DOI

[11] E. Naslund, Bull. Lond. Math. Soc., 52:4 (2020), 687–692 | DOI | MR | Zbl

[12] D. Conlon and J. Fox, Discrete Comput. Geom., 61:1 (2019), 218–225 | DOI | MR | Zbl

[13] A. B. Kupavskii and A. A. Sagdeev, Uspekhi Mat. Nauk, 75:5(455) (2020), 191–192 ; English transl. in Russian Math. Surveys, 75:5 (2020), 965–967 | DOI | MR | Zbl | DOI

[14] A. Kupavskii and A. Sagdeev, Forum Math. Sigma, 9 (2021), e55, 12 pp. | DOI | MR | Zbl