Infinite sets can be Ramsey in the Chebyshev metric
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 549-551

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2022_77_3_a5,
     author = {A. B. Kupavskii and A. A. Sagdeev and N. Frankl},
     title = {Infinite sets can be {Ramsey} in the {Chebyshev} metric},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {549--551},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. A. Sagdeev
AU  - N. Frankl
TI  - Infinite sets can be Ramsey in the Chebyshev metric
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 549
EP  - 551
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/
LA  - en
ID  - RM_2022_77_3_a5
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. A. Sagdeev
%A N. Frankl
%T Infinite sets can be Ramsey in the Chebyshev metric
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 549-551
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/
%G en
%F RM_2022_77_3_a5
A. B. Kupavskii; A. A. Sagdeev; N. Frankl. Infinite sets can be Ramsey in the Chebyshev metric. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 549-551. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a5/