On estimating the local error of a numerical solution of a parametrized Cauchy problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 543-545 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2022_77_3_a3,
     author = {E. B. Kuznetsov and S. S. Leonov},
     title = {On estimating the local error of a~numerical solution of a~parametrized {Cauchy} problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {543--545},
     year = {2022},
     volume = {77},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a3/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - S. S. Leonov
TI  - On estimating the local error of a numerical solution of a parametrized Cauchy problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 543
EP  - 545
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a3/
LA  - en
ID  - RM_2022_77_3_a3
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A S. S. Leonov
%T On estimating the local error of a numerical solution of a parametrized Cauchy problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 543-545
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2022_77_3_a3/
%G en
%F RM_2022_77_3_a3
E. B. Kuznetsov; S. S. Leonov. On estimating the local error of a numerical solution of a parametrized Cauchy problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 543-545. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a3/

[1] V. I. Shalashilin and E. B. Kuznetsov, Parametric continuation and optimal parametrization in applied mathematics and mechanics, Editorial URSS, Moscow, 1999, 222 pp. ; English transl. Kluwer Acad. Publ., Dordrecht, 2003, viii+228 pp. | MR | DOI | MR | Zbl

[2] E. B. Kuznetsov and S. S. Leonov, Prikl. Mat. Tekhn. Fiz., 57:2(336) (2016), 202–211 ; English transl. in J. Appl. Mech. Tech. Phys., 57:2 (2016), 369–377 | DOI | MR | DOI

[3] A. A. Belov and N. N. Kalitkin, Differ. Uravn., 55:7 (2019), 907–918 ; English transl. in Differ. Equ., 55:7 (2019), 871–883 | MR | Zbl | DOI

[4] Ch. Hirota and K. Ozawa, J. Comput. Appl. Math., 193:2 (2006), 614–637 | DOI | MR | Zbl

[5] A. N. Danilin, N. N. Zuev, E. B. Kuznetsov, and V. I. Shalashilin, Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999), 1134–1141 ; English transl. in Comput. Math. Math. Phys., 39:7 (1999), 1092–1099 | MR | Zbl