Elements of hyperbolic theory on an infinite-dimensional torus
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 379-443
Voir la notice de l'article provenant de la source Math-Net.Ru
On the infinite-dimensional torus $\mathbb{T}^{\infty}=E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional Banach torus and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon\mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ whose differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$ elements of hyperbolic theory are presented systematically, starting with definitions and some auxiliary facts and ending by more advanced results. The latter include a criterion for hyperbolicity, a theorem on the $C^1$-roughness of hyperbolicity for diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$, the Hadamard–Perron theorem, as well as a fundamental result of hyperbolic theory, the fact that each Anosov diffeomorphism $G\in\operatorname{Diff}(\mathbb{T}^{\infty})$ has a stable and an unstable invariant foliation.
Bibliography: 34 titles.
Keywords:
integer lattice, infinite-dimensional torus, diffeomorphism, hyperbolicity
Mots-clés : Hadamard–Perron theorem, invariant foliations.
Mots-clés : Hadamard–Perron theorem, invariant foliations.
@article{RM_2022_77_3_a0, author = {S. D. Glyzin and A. Yu. Kolesov}, title = {Elements of hyperbolic theory on an infinite-dimensional torus}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {379--443}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/} }
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov TI - Elements of hyperbolic theory on an infinite-dimensional torus JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 379 EP - 443 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/ LA - en ID - RM_2022_77_3_a0 ER -
S. D. Glyzin; A. Yu. Kolesov. Elements of hyperbolic theory on an infinite-dimensional torus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 379-443. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/