Elements of hyperbolic theory on an infinite-dimensional torus
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 379-443

Voir la notice de l'article provenant de la source Math-Net.Ru

On the infinite-dimensional torus $\mathbb{T}^{\infty}=E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional Banach torus and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon\mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ whose differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$ elements of hyperbolic theory are presented systematically, starting with definitions and some auxiliary facts and ending by more advanced results. The latter include a criterion for hyperbolicity, a theorem on the $C^1$-roughness of hyperbolicity for diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$, the Hadamard–Perron theorem, as well as a fundamental result of hyperbolic theory, the fact that each Anosov diffeomorphism $G\in\operatorname{Diff}(\mathbb{T}^{\infty})$ has a stable and an unstable invariant foliation. Bibliography: 34 titles.
Keywords: integer lattice, infinite-dimensional torus, diffeomorphism, hyperbolicity
Mots-clés : Hadamard–Perron theorem, invariant foliations.
@article{RM_2022_77_3_a0,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Elements of hyperbolic theory on an infinite-dimensional torus},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {379--443},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Elements of hyperbolic theory on an infinite-dimensional torus
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 379
EP  - 443
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/
LA  - en
ID  - RM_2022_77_3_a0
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Elements of hyperbolic theory on an infinite-dimensional torus
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 379-443
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/
%G en
%F RM_2022_77_3_a0
S. D. Glyzin; A. Yu. Kolesov. Elements of hyperbolic theory on an infinite-dimensional torus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 379-443. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/