Elements of hyperbolic theory on an infinite-dimensional torus
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 379-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the infinite-dimensional torus $\mathbb{T}^{\infty}=E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional Banach torus and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon\mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ whose differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$ elements of hyperbolic theory are presented systematically, starting with definitions and some auxiliary facts and ending by more advanced results. The latter include a criterion for hyperbolicity, a theorem on the $C^1$-roughness of hyperbolicity for diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$, the Hadamard–Perron theorem, as well as a fundamental result of hyperbolic theory, the fact that each Anosov diffeomorphism $G\in\operatorname{Diff}(\mathbb{T}^{\infty})$ has a stable and an unstable invariant foliation. Bibliography: 34 titles.
Keywords: integer lattice, infinite-dimensional torus, diffeomorphism, hyperbolicity
Mots-clés : Hadamard–Perron theorem, invariant foliations.
@article{RM_2022_77_3_a0,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Elements of hyperbolic theory on an infinite-dimensional torus},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {379--443},
     year = {2022},
     volume = {77},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Elements of hyperbolic theory on an infinite-dimensional torus
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 379
EP  - 443
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/
LA  - en
ID  - RM_2022_77_3_a0
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Elements of hyperbolic theory on an infinite-dimensional torus
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 379-443
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/
%G en
%F RM_2022_77_3_a0
S. D. Glyzin; A. Yu. Kolesov. Elements of hyperbolic theory on an infinite-dimensional torus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 379-443. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a0/

[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[2] D. V. Anosov and V. V Solodov, “Hyperbolic sets”, Dynamical systems with hyperbolic behaviour. Dynamical systems IX, Sovr. Probl. Mat. Fund. Napravl., 66, VINITI, Moscow, 1991, 12–99 ; English transl. in Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 10–92 | MR | Zbl | DOI | MR | Zbl

[3] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Tr. Mat. Inst. Steklov., 90, 1967, 3–210 ; English transl. in Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl

[4] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[5] B. Hasselblatt and A. Katok, A first course in dynamics with a panorama of recent developments, Cambridge Univ. Press, New York, 2003, x+424 pp. | DOI | MR | Zbl

[6] S. Yu. Pilyugin, Spaces of dynamical systems, Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhevsk, 2008, 272 pp.; English transl. De Gruyter Stud. Math. Phys., 3, De Gruyter, Berlin, 2012, xvi+229 pp. | DOI | MR | Zbl

[7] V. Z. Grines and O. V. Pochinka, Introduction to the topological classification of cascades on manifolds of dimension two and three, Regulyarnaya i Khaotichaskaya Dinamika, Moscow–Izhevsk, 2011, 424 pp. (Russian)

[8] V. Grines and E. Zhuzhoma, Surface laminations and chaotic dynamical systems, Izhevsk Institute of Computer Science, Izhevsk, 2021, 502 pp.

[9] J. Palis, Jr., and W. de Melo, Geometric theory of dynamical systems. An introduction, Transl. from the Portuguese, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | DOI | MR | Zbl

[10] Ya. B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., Eur. Math. Soc. (EMS), Zürich, 2004, vi+122 pp. | DOI | MR | Zbl

[11] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | DOI | MR | Zbl

[12] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Fractal dimensions and infinitely many attractors, Cambridge Stud. Adv. Math., 35, Cambridge Univ. Press, Cambridge, 1993, x+234 pp. | MR | Zbl

[13] D. Ruelle, “Large volume limit of the distribution of characteristic exponents in turbulence”, Comm. Math. Phys., 87:2 (1982), 287–302 | DOI | MR | Zbl

[14] R. Mañé, Ergodic theory and differentiable dynamics, Transl. from the Portuguese, Ergeb. Math. Grenzgeb. (3), 8, Springer-Verlag, Berlin, 1987, xii+317 pp. | DOI | MR | Zbl

[15] P. Thieullen, “Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems”, J. Dynam. Differential Equations, 4:1 (1992), 127–159 | DOI | MR | Zbl

[16] H. M. Hastings, “On expansive homeomorphisms of the infinite torus”, The structure of attractors in dynamical systems (North Dakota State Univ., Fargo, ND 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978, 142–149 | DOI | MR | Zbl

[17] R. Mañé, “Expansive homeomorphisms and topological dimension”, Trans. Amer. Math. Soc., 252 (1979), 313–319 | DOI | MR | Zbl

[18] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Expansive endomorphisms on the infinite-dimensional torus”, Funktsional. Anal. i Prilozhen., 54:4 (2020), 17–36 ; English transl. in Funct. Anal. Appl., 54:4 (2020), 241–256 | DOI | MR | Zbl | DOI

[19] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Solenoidal attractors of diffeomorphisms of annular sets”, Uspekhi Mat. Nauk, 75:2(452) (2020), 3–60 ; English transl. in Russian Math. Surveys, 75:2 (2020), 197–252 | DOI | MR | Zbl | DOI

[20] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “One class of structurally stable endomorphisms on an infinite-dimensional torus”, Differ. Uravn., 56:10 (2020), 1412–1416 ; English transl. in Differ. Equ., 56:10 (2020), 1382–1386 | DOI | MR | Zbl | DOI

[21] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “On a class of Anosov diffeomorphisms on the infinite-dimensional torus”, Izv. Ross. Akad. Nauk Ser. Mat., 85:2 (2021), 3–59 ; English transl. in Izv. Math., 85:2 (2021), 177–227 | DOI | MR | Zbl | DOI

[22] S. D. Glyzin and A. Yu. Kolesov, “A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus”, Mat. Sb., 213:2 (2022), 50–95 ; English transl. in Sb. Math., 213:2 (2022), 173–215 | DOI | Zbl | DOI

[23] B. Jessen, “The theory of integration in a space of an infinite number of dimensions”, Acta Math., 63:1 (1934), 249–323 | DOI | MR | Zbl

[24] S. S. Platonov, “Certain approximation problems for functions on the infinite-dimensional torus: analogs of the Jackson theorem”, Algebra i Analiz, 26:6 (2014), 99–120 ; English transl. in St. Petersburg Math. J., 26:6 (2015), 933–947 | MR | Zbl | DOI

[25] D. Kosz, “On differentiation of integrals in the infinite-dimensional torus”, Studia Math., 258:1 (2021), 103–119 | DOI | MR | Zbl

[26] S. Banach and S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178 | DOI | Zbl

[27] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl

[28] L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Nauka, Moscow, 1977, 742 pp. ; English transl. Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl

[29] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “On some sufficient hyperbolicity conditions”, Tr. Mat. Inst. Steklov., 308 (2020), 116–134 ; English transl. in Proc. Steklov Inst. Math., 308 (2020), 107–124 | DOI | MR | Zbl | DOI

[30] J. D. Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic attractors”, Phys. D, 7:1-3 (1983), 153–180 | DOI | MR | Zbl

[31] A. Yu. Kolesov, N. Kh. Rozov, and V. A. Sadovnichii, “On the hyperbolicity of toral endomorphisms”, Mat. Zametki, 105:2 (2019), 251–268 ; English transl. in Math. Notes, 105:2 (2019), 236–250 | DOI | MR | Zbl | DOI

[32] J. Hadamard, “Sur l'itération et les solutions asymptotiques des équations différentielles”, Bull. Soc. Math. France, 29 (1901), 224–228 | Zbl

[33] O. Perron, “Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen”, J. Reine Angew. Math., 1929:161 (1929), 41–64 | DOI | MR | Zbl

[34] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, Methods of qualitative theory in nonlinear dynamics, v. I, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 4, World Sci. Publ., River Edge, NJ, 1998, xxiv+392 pp. | DOI | MR | Zbl