On a canonical basis of a pair of compatible Poisson brackets on a symplectic Lie algebra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 375-377
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2022_77_2_a7,
author = {A. A. Garazha},
title = {On a canonical basis of a pair of compatible {Poisson} brackets on a symplectic {Lie} algebra},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {375--377},
year = {2022},
volume = {77},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_2_a7/}
}
TY - JOUR AU - A. A. Garazha TI - On a canonical basis of a pair of compatible Poisson brackets on a symplectic Lie algebra JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 375 EP - 377 VL - 77 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_2_a7/ LA - en ID - RM_2022_77_2_a7 ER -
A. A. Garazha. On a canonical basis of a pair of compatible Poisson brackets on a symplectic Lie algebra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 375-377. http://geodesic.mathdoc.fr/item/RM_2022_77_2_a7/
[1] A. V. Bolsinov, P. Zhang, Transform. Groups, 21:1 (2016), 51–86 | DOI | MR | Zbl
[2] A. G. Elashvili, V. G. Kac, E. B. Vinberg, J. Lie Theory, 19:2 (2009), 371–390 | MR | Zbl
[3] A. A. Garazha, Matem. sb., 211:6 (2020), 95–106 | DOI | DOI | MR | Zbl
[4] A. Molev, O. Yakimova, Represent. Theory, 23 (2019), 350–378 | DOI | MR | Zbl