A number-theoretic part of control theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 369-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2022_77_2_a5,
     author = {A. I. Ovseevich},
     title = {A number-theoretic part of control theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {369--371},
     year = {2022},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_2_a5/}
}
TY  - JOUR
AU  - A. I. Ovseevich
TI  - A number-theoretic part of control theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 369
EP  - 371
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_2_a5/
LA  - en
ID  - RM_2022_77_2_a5
ER  - 
%0 Journal Article
%A A. I. Ovseevich
%T A number-theoretic part of control theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 369-371
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2022_77_2_a5/
%G en
%F RM_2022_77_2_a5
A. I. Ovseevich. A number-theoretic part of control theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 369-371. http://geodesic.mathdoc.fr/item/RM_2022_77_2_a5/

[1] V. I. Korobov, Matem. sb., 109(151):4(8) (1979), 582–606 | DOI | MR | Zbl

[2] A. E. Choke Rivero, V. I. Korobov, V. A. Skorik, Matem. fiz., anal., geom., 11:2 (2004), 208–225 | MR | Zbl

[3] A. E. Choke Rivero, V. I. Korobov, V. A. Skorik, Matem. fiz., anal., geom., 11:3 (2004), 341–354 | MR | Zbl

[4] I. M. Ananevskii, N. V. Anokhin, A. I. Ovseevich, Dokl. RAN, 434:3 (2010), 319–323 | DOI | MR | Zbl

[5] A. Ovseevich, J. Optim. Theory Appl., 165:2 (2015), 532–544 | DOI | MR | Zbl

[6] A. Fedorov, A. Ovseevich, Mosc. Math. J., 16:3 (2016), 561–598 | DOI | MR | Zbl

[7] G. Sege, Ortogonalnye mnogochleny, Fizmatlit, M., 1962, 500 pp. | MR | Zbl | Zbl

[8] D. Hilbert, Acta Math., 18:1 (1894), 155–159 | DOI | MR | Zbl

[9] Man-Duen Choi, Amer. Math. Monthly, 90:5 (1983), 301–312 | DOI | MR | Zbl