R. Thompson's group $F$ and the amenability problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 251-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper focuses on Richard Thompson's group $F$, which was discovered in the 1960s. Many papers have been devoted to this group. We are interested primarily in the famous problem of amenability of this group, which was posed by Geoghegan in 1979. Numerous attempts have been made to solve this problem in one way or the other, but it remains open. In this survey we describe the most important known properties of this group related to the word problem and representations of elements of the group by piecewise linear functions as well as by diagrams and other geometric objects. We describe the classical results of Brin and Squier concerning free subgroups and laws. We include a description of more modern important results relating to the properties of the Cayley graphs (the Belk–Brown construction) as well as Bartholdi's theorem about the properties of equations in group rings. We consider separately the criteria for (non-)amenability of groups that are useful in the work on the main problem. At the end we describe a number of our own results about the structure of the Cayley graphs and a new algorithm for solving the word problem. Bibliography: 69 titles.
Keywords: Thompson's group $F$, amenability, Cayley graphs, diagram groups, group rings.
@article{RM_2022_77_2_a1,
     author = {V. S. Guba},
     title = {R.~Thompson's group $F$ and the amenability problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {251--300},
     year = {2022},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_2_a1/}
}
TY  - JOUR
AU  - V. S. Guba
TI  - R. Thompson's group $F$ and the amenability problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 251
EP  - 300
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_2_a1/
LA  - en
ID  - RM_2022_77_2_a1
ER  - 
%0 Journal Article
%A V. S. Guba
%T R. Thompson's group $F$ and the amenability problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 251-300
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2022_77_2_a1/
%G en
%F RM_2022_77_2_a1
V. S. Guba. R. Thompson's group $F$ and the amenability problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 251-300. http://geodesic.mathdoc.fr/item/RM_2022_77_2_a1/

[1] S. I. Adyan, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl

[2] G. N. Arzhantseva, V. S. Guba, M. Lustig, J.-P. Préaux, “Testing Cayley graph densities”, Ann. Math. Blaise Pascal, 15:2 (2008), 233–286 | DOI | MR | Zbl

[3] L. Bartholdi, “Amenability of groups is characterized by Myhill's theorem”, With an appendix by Dawid Kielak, J. Eur. Math. Soc. (JEMS), 21:10 (2019), 3191–3197 | DOI | MR | Zbl

[4] J. M. Belk, K. S. Brown, “Forest diagrams for elements of Thompson's group $F$”, Internat. J. Algebra Comput., 15:5-6 (2005), 815–850 | DOI | MR | Zbl

[5] M. G. Brin, “The ubiquity of Thompson's group $F$ in groups of piecewise linear homeomorphisms of the unit interval”, J. London Math. Soc. (2), 60:2 (1999), 449–460 | DOI | MR | Zbl

[6] M. G. Brin, C. C. Squier, “Groups of piecewise linear homeomorphisms of the real line”, Invent. Math., 79:3 (1985), 485–498 | DOI | MR | Zbl

[7] K. S. Brown, “Finiteness properties of groups”, J. Pure Appl. Algebra, 44:1-3 (1987), 45–75 | DOI | MR | Zbl

[8] K. S. Brown, R. Geoghegan, “An infinite-dimentional torsion-free $FP_{\infty}$ group”, Invent. Math., 77 (1984), 367–381 | DOI | MR | Zbl

[9] J. Burillo, “Growth of positive words in Thompson's group $F$”, Comm. Algebra, 32:8 (2004), 3087–3094 | DOI | MR | Zbl

[10] J. Burillo, Introduction to Thompson's group $F$, preprint, 2016, 85 pp.,\par https://web.mat.upc.edu/pep.burillo/

[11] J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3-4 (1996), 215–256 | MR | Zbl

[12] T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, xx+439 pp. | DOI | MR | Zbl

[13] C. G. Chehata, “An algebraically simple ordered group”, Proc. London Math. Soc. (3), 2 (1952), 183–197 | DOI | MR | Zbl

[14] Ching Chou, “Elementary amenable groups”, Illinois J. Math., 24:3 (1980), 396–407 | DOI | MR | Zbl

[15] S. Cleary, J. Taback, “Thompson's group $F$ is not almost convex”, J. Algebra, 270:1 (2003), 133–149 | DOI | MR | Zbl

[16] J. M. Cohen, “Cogrowth and amenability of discrete groups”, J. Funct. Anal., 48:3 (1982), 301–309 | DOI | MR | Zbl

[17] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | DOI | MR | Zbl

[18] P. de la Harpe, R. I. Grigorchuk, T. Ceccherini-Silberstein, “Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces”, Proc. Steklov Inst. Math., 224 (1999), 57–97 | MR | Zbl

[19] V. Dlab, “On a family of simple ordered groups”, J. Austral. Math. Soc., 8:3 (1968), 591–608 | DOI | MR | Zbl

[20] J. Dydak, “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon Sci. Sér. Sci. Math. Astronom. Phys., 25:1 (1977), 55–62 | MR | Zbl

[21] J. Dydak, “1-movable continua need not be pointed 1-movable”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25:6 (1977), 559–562 | MR | Zbl

[22] M. Elder, É. Fusy, A. Rechnitzer, “Counting elements and geodesics in Thompson's group $F$”, J. Algebra, 324:1 (2010), 102–121 | DOI | MR | Zbl

[23] E. Følner, “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254 | DOI | MR | Zbl

[24] S. B. Fordham, Minimal length elements of Thompson's group $F$, PhD thesis, Brigham Young Univ., 1995, 88 pp. | MR

[25] P. Freyd, A. Heller, “Splitting homotopy idempotents II”, J. Pure Appl. Algebra, 89:1-2 (1993), 93–106 | DOI | MR | Zbl

[26] R. Geoghegan, “Open problems in infinite-dimensional topology”, 1979 version, Topology Proc., 4:1 (1979), 287–338 | MR | Zbl

[27] S. M. Gersten, “Selected problems”, Combinatorial group theory and topology (Alta, UT, 1984), Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987, 545–551 | MR | Zbl

[28] G. Golan, M. Sapir, “On subgroups of R. Thompson's group $F$”, Trans. Amer. Math. Soc., 369:12 (2017), 8857–8878 | DOI | MR | Zbl

[29] G. Golan, M. Sapir, “On Jones' subgroup of R. Thompson group $F$”, J. Algebra, 470 (2017), 122–159 | DOI | MR | Zbl

[30] G. Golan, M. Sapir, “On the stabilizers of finite sets of numbers in the R. Thompson group $F$”, Algebra i analiz, 29:1 (2017), 70–110 ; St. Petersburg Math. J., 29:1 (2018), 51–79 | MR | Zbl | DOI

[31] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, ON–London, 1969, ix+113 pp. | MR | Zbl | Zbl

[32] R. I. Grigorchuk, “Symmetrical random walks on discrete groups”, Multicomponent random systems, Adv. Probab. Related Topics, 6, Marcel Dekker, Inc., New York, 1980, 285–325 | MR | MR | Zbl | Zbl

[33] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[34] R. I. Grigorchuk, “On a problem of day on nonelementary amenable groups in the class of finitely defined groups”, Math. Notes, 60:5 (1996), 580–582 | DOI | DOI | MR | Zbl

[35] R. I. Grigorchuk, “An example of a finitely presented amenable group not belonging to the class $EG$”, Sb. Math., 189:1 (1998), 75–95 | DOI | DOI | MR | Zbl

[36] V. S. Guba, “Polynomial upper bounds for the Dehn function of R. Thompson's group $F$”, J. Group Theory, 1:2 (1998), 203–211 | DOI | MR | Zbl

[37] V. S. Guba, “Polynomial isoperimetric inequalities for Richard Thompson's groups $F$, $T$, and $V$”, Algorithmic problems in groups and semigroups (Lincoln, NE, 1998), Trends Math., Birkhäuser Boston, Boston, MA, 2000, 91–120 | DOI | MR | Zbl

[38] V. S. Guba, “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702 | DOI | MR | Zbl

[39] V. S. Guba, “The Dehn function of Richard Thompson's group $F$ is quadratic”, Invent. Math., 163:2 (2006), 313–342 | DOI | MR | Zbl

[40] V. S. Guba, “On the density of Cayley graphs of R. Thompson's group $F$ in symmetric generators”, Internat. J. Algebra Comput., 31:5 (2021), 969–981 | DOI | MR | Zbl

[41] V. S. Guba, “On the Ore condition for the group ring of R. Thompson's group $F$”, Comm. Algebra, 49:11 (2021), 4699–4711 | DOI | MR | Zbl

[42] V. Guba, Evacuation schemes on Cayley graphs and non-amenability of groups, submitted to Internat. J. Algebra Comput., 2021, 17 pp., arXiv: 2112.09812

[43] V. S. Guba, S. M. Lvovskii, “Paradoks” Banakha–Tarskogo, 2-e izd., MTsNMO, M., 2016, 48 pp.

[44] V. S. Guba, M. V. Sapir, “The Dehn function and a regular set of normal forms for R. Thompson's group $F$”, J. Austral. Math. Soc. Ser. A, 62:3 (1997), 315–328 | DOI | MR | Zbl

[45] V. Guba, M. Sapir, Diagram groups, Mem. Amer. Math. Soc., 130, No 620, Amer. Math. Soc., Providence, RI, 1997, 117 pp. | DOI | MR | Zbl

[46] V. S. Guba, M. V. Sapir, “On subgroups of R. Thompson's group $F$ and other diagram groups”, Sb. Math., 190:8 (1999), 1077–1130 | DOI | DOI | MR | Zbl

[47] V. S. Guba, M. V. Sapir, “Rigidity properties of diagram groups”, Internat. J. Algebra Comput., 12:1-2 (2002), 9–17 | DOI | MR | Zbl

[48] V. S. Guba, M. V. Sapir, “Diagram groups and directed $2$-complexes: homotopy and homology”, J. Pure Appl. Algebra, 205:1 (2006), 1–47 | DOI | MR | Zbl

[49] V. S. Guba, M. V. Sapir, “Diagram groups are totally orderable”, J. Pure Appl. Algebra, 205:1 (2006), 48–73 | DOI | MR | Zbl

[50] M. Hall Jr., “Distinct representatives of subsets”, Bull. Amer. Math. Soc., 54:10 (1948), 922–926 | DOI | MR | Zbl

[51] P. Hall, “On representation of subsets”, J. London Math. Soc., 10 (1935), 26–30 | DOI | Zbl

[52] P. R. Halmos, H. E. Vaughan, “The marriage problem”, Amer. J. Math., 72:1 (1950), 214–215 | DOI | MR | Zbl

[53] G. Higman, Finitely presented infinite simple groups, Notes on Pure Math., 8, Austral. Nat. Univ., Canberra, 1974, vii+82 pp. | MR | Zbl

[54] H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92:2 (1959), 336–354 | DOI | MR | Zbl

[55] H. Kesten, “Full Banach mean values on countable groups”, Math. Scand., 7 (1959), 146–156 | DOI | MR | Zbl

[56] R. McKenzie, R. J. Thompson, “An elementary construction of unsolvable word problems in group theory”, Word problems: decision problems and the Burnside problem in group theory (Irvine, CA, 1969), Stud. Logic Found. Math., 71, North-Holland, Amsterdam, 1973, 457–478 | DOI | MR | Zbl

[57] L. Mirsky, Transversal theory. An account of some aspects of combinatorial mathematics, Math. Sci. Eng., 75, Academic Press, New York–London, 1971, ix+255 pp. | MR | Zbl

[58] J. T. Moore, “Fast growth in the Følner function for Thompson's group $F$”, Groups Geom. Dyn., 7:3 (2013), 633–651 | DOI | MR | Zbl

[59] Dzh. fon Neiman, “K obschei teorii mery”, Izbrannye trudy po funktsionalnomu analizu, v. 1, Nauka, M., 1987, 171–200 ; “ДобавлРμРЅРёРμ”, 201 ; J. von Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116 ; “Zusatz”, 333 ; Collected works, v. 1, Pergamon Press, New York–Oxford–London–Paris, 1961, 599–643 | MR | Zbl | DOI | Zbl | DOI | Zbl | MR | Zbl

[60] A. Yu. Ol'shanskii, “On the problem of the existence of an invariant mean on a group”, Russian Math. Surveys, 35:4 (1980), 180–181 | DOI | MR | Zbl

[61] A. Yu. Ol'shanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 96 (2003), 43–169 | DOI | MR | Zbl

[62] O. Ore, “Linear equations in non-commutative fields”, Ann. of Math. (2), 32:3 (1931), 463–477 | DOI | MR | Zbl

[63] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. I, Grundlehren Math. Wiss., 19, Reihen. Integralrechnung. Funktionentheorie, 3. bericht. Aufl., Springer-Verlag, Berlin–New York, 1964, xvi+338 pp. | DOI | MR | MR | Zbl

[64] M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp. | DOI | MR | Zbl

[65] Zh.-P. Serr, “Derevya, amalgamy i ${SL}_2$”, Matematika, 18:1 (1974), 3–51 ; 18:2, 3–27 ; J.-P. Serre, Arbres, amalgames, $\mathrm{SL}_2$, Rédigé avec la collaboration de H. Bass, Astérisque, 46, Soc. Math. France, Paris, 1977, 189 pp. ; J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980, ix+142 СЃ. | Zbl | Zbl | MR | Zbl | MR | Zbl

[66] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, 1999, xii+581 pp. | DOI | MR | Zbl

[67] R. Szwarc, “A short proof of the Grigorchuk–Cohen cogrowth theorem”, Proc. Amer. Math. Soc., 106:3 (1989), 663–665 | DOI | MR | Zbl

[68] D. Tamari, “A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept”, Proceedings of the international congress of mathematicians (Amsterdam, 1954), v. 1, P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, 439–440 | Zbl

[69] S. Wagon, The Banach–Tarski paradox, Encyclopedia Math. Appl., 24, Camdridge Univ. Press, Cambridge, 1985, xvi+251 pp. | DOI | MR | Zbl