@article{RM_2022_77_2_a1,
author = {V. S. Guba},
title = {R.~Thompson's group $F$ and the amenability problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {251--300},
year = {2022},
volume = {77},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_2_a1/}
}
V. S. Guba. R. Thompson's group $F$ and the amenability problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 251-300. http://geodesic.mathdoc.fr/item/RM_2022_77_2_a1/
[1] S. I. Adyan, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl
[2] G. N. Arzhantseva, V. S. Guba, M. Lustig, J.-P. Préaux, “Testing Cayley graph densities”, Ann. Math. Blaise Pascal, 15:2 (2008), 233–286 | DOI | MR | Zbl
[3] L. Bartholdi, “Amenability of groups is characterized by Myhill's theorem”, With an appendix by Dawid Kielak, J. Eur. Math. Soc. (JEMS), 21:10 (2019), 3191–3197 | DOI | MR | Zbl
[4] J. M. Belk, K. S. Brown, “Forest diagrams for elements of Thompson's group $F$”, Internat. J. Algebra Comput., 15:5-6 (2005), 815–850 | DOI | MR | Zbl
[5] M. G. Brin, “The ubiquity of Thompson's group $F$ in groups of piecewise linear homeomorphisms of the unit interval”, J. London Math. Soc. (2), 60:2 (1999), 449–460 | DOI | MR | Zbl
[6] M. G. Brin, C. C. Squier, “Groups of piecewise linear homeomorphisms of the real line”, Invent. Math., 79:3 (1985), 485–498 | DOI | MR | Zbl
[7] K. S. Brown, “Finiteness properties of groups”, J. Pure Appl. Algebra, 44:1-3 (1987), 45–75 | DOI | MR | Zbl
[8] K. S. Brown, R. Geoghegan, “An infinite-dimentional torsion-free $FP_{\infty}$ group”, Invent. Math., 77 (1984), 367–381 | DOI | MR | Zbl
[9] J. Burillo, “Growth of positive words in Thompson's group $F$”, Comm. Algebra, 32:8 (2004), 3087–3094 | DOI | MR | Zbl
[10] J. Burillo, Introduction to Thompson's group $F$, preprint, 2016, 85 pp.,\par https://web.mat.upc.edu/pep.burillo/
[11] J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3-4 (1996), 215–256 | MR | Zbl
[12] T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, xx+439 pp. | DOI | MR | Zbl
[13] C. G. Chehata, “An algebraically simple ordered group”, Proc. London Math. Soc. (3), 2 (1952), 183–197 | DOI | MR | Zbl
[14] Ching Chou, “Elementary amenable groups”, Illinois J. Math., 24:3 (1980), 396–407 | DOI | MR | Zbl
[15] S. Cleary, J. Taback, “Thompson's group $F$ is not almost convex”, J. Algebra, 270:1 (2003), 133–149 | DOI | MR | Zbl
[16] J. M. Cohen, “Cogrowth and amenability of discrete groups”, J. Funct. Anal., 48:3 (1982), 301–309 | DOI | MR | Zbl
[17] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | DOI | MR | Zbl
[18] P. de la Harpe, R. I. Grigorchuk, T. Ceccherini-Silberstein, “Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces”, Proc. Steklov Inst. Math., 224 (1999), 57–97 | MR | Zbl
[19] V. Dlab, “On a family of simple ordered groups”, J. Austral. Math. Soc., 8:3 (1968), 591–608 | DOI | MR | Zbl
[20] J. Dydak, “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon Sci. Sér. Sci. Math. Astronom. Phys., 25:1 (1977), 55–62 | MR | Zbl
[21] J. Dydak, “1-movable continua need not be pointed 1-movable”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25:6 (1977), 559–562 | MR | Zbl
[22] M. Elder, É. Fusy, A. Rechnitzer, “Counting elements and geodesics in Thompson's group $F$”, J. Algebra, 324:1 (2010), 102–121 | DOI | MR | Zbl
[23] E. Følner, “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254 | DOI | MR | Zbl
[24] S. B. Fordham, Minimal length elements of Thompson's group $F$, PhD thesis, Brigham Young Univ., 1995, 88 pp. | MR
[25] P. Freyd, A. Heller, “Splitting homotopy idempotents II”, J. Pure Appl. Algebra, 89:1-2 (1993), 93–106 | DOI | MR | Zbl
[26] R. Geoghegan, “Open problems in infinite-dimensional topology”, 1979 version, Topology Proc., 4:1 (1979), 287–338 | MR | Zbl
[27] S. M. Gersten, “Selected problems”, Combinatorial group theory and topology (Alta, UT, 1984), Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987, 545–551 | MR | Zbl
[28] G. Golan, M. Sapir, “On subgroups of R. Thompson's group $F$”, Trans. Amer. Math. Soc., 369:12 (2017), 8857–8878 | DOI | MR | Zbl
[29] G. Golan, M. Sapir, “On Jones' subgroup of R. Thompson group $F$”, J. Algebra, 470 (2017), 122–159 | DOI | MR | Zbl
[30] G. Golan, M. Sapir, “On the stabilizers of finite sets of numbers in the R. Thompson group $F$”, Algebra i analiz, 29:1 (2017), 70–110 ; St. Petersburg Math. J., 29:1 (2018), 51–79 | MR | Zbl | DOI
[31] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, ON–London, 1969, ix+113 pp. | MR | Zbl | Zbl
[32] R. I. Grigorchuk, “Symmetrical random walks on discrete groups”, Multicomponent random systems, Adv. Probab. Related Topics, 6, Marcel Dekker, Inc., New York, 1980, 285–325 | MR | MR | Zbl | Zbl
[33] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl
[34] R. I. Grigorchuk, “On a problem of day on nonelementary amenable groups in the class of finitely defined groups”, Math. Notes, 60:5 (1996), 580–582 | DOI | DOI | MR | Zbl
[35] R. I. Grigorchuk, “An example of a finitely presented amenable group not belonging to the class $EG$”, Sb. Math., 189:1 (1998), 75–95 | DOI | DOI | MR | Zbl
[36] V. S. Guba, “Polynomial upper bounds for the Dehn function of R. Thompson's group $F$”, J. Group Theory, 1:2 (1998), 203–211 | DOI | MR | Zbl
[37] V. S. Guba, “Polynomial isoperimetric inequalities for Richard Thompson's groups $F$, $T$, and $V$”, Algorithmic problems in groups and semigroups (Lincoln, NE, 1998), Trends Math., Birkhäuser Boston, Boston, MA, 2000, 91–120 | DOI | MR | Zbl
[38] V. S. Guba, “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702 | DOI | MR | Zbl
[39] V. S. Guba, “The Dehn function of Richard Thompson's group $F$ is quadratic”, Invent. Math., 163:2 (2006), 313–342 | DOI | MR | Zbl
[40] V. S. Guba, “On the density of Cayley graphs of R. Thompson's group $F$ in symmetric generators”, Internat. J. Algebra Comput., 31:5 (2021), 969–981 | DOI | MR | Zbl
[41] V. S. Guba, “On the Ore condition for the group ring of R. Thompson's group $F$”, Comm. Algebra, 49:11 (2021), 4699–4711 | DOI | MR | Zbl
[42] V. Guba, Evacuation schemes on Cayley graphs and non-amenability of groups, submitted to Internat. J. Algebra Comput., 2021, 17 pp., arXiv: 2112.09812
[43] V. S. Guba, S. M. Lvovskii, “Paradoks” Banakha–Tarskogo, 2-e izd., MTsNMO, M., 2016, 48 pp.
[44] V. S. Guba, M. V. Sapir, “The Dehn function and a regular set of normal forms for R. Thompson's group $F$”, J. Austral. Math. Soc. Ser. A, 62:3 (1997), 315–328 | DOI | MR | Zbl
[45] V. Guba, M. Sapir, Diagram groups, Mem. Amer. Math. Soc., 130, No 620, Amer. Math. Soc., Providence, RI, 1997, 117 pp. | DOI | MR | Zbl
[46] V. S. Guba, M. V. Sapir, “On subgroups of R. Thompson's group $F$ and other diagram groups”, Sb. Math., 190:8 (1999), 1077–1130 | DOI | DOI | MR | Zbl
[47] V. S. Guba, M. V. Sapir, “Rigidity properties of diagram groups”, Internat. J. Algebra Comput., 12:1-2 (2002), 9–17 | DOI | MR | Zbl
[48] V. S. Guba, M. V. Sapir, “Diagram groups and directed $2$-complexes: homotopy and homology”, J. Pure Appl. Algebra, 205:1 (2006), 1–47 | DOI | MR | Zbl
[49] V. S. Guba, M. V. Sapir, “Diagram groups are totally orderable”, J. Pure Appl. Algebra, 205:1 (2006), 48–73 | DOI | MR | Zbl
[50] M. Hall Jr., “Distinct representatives of subsets”, Bull. Amer. Math. Soc., 54:10 (1948), 922–926 | DOI | MR | Zbl
[51] P. Hall, “On representation of subsets”, J. London Math. Soc., 10 (1935), 26–30 | DOI | Zbl
[52] P. R. Halmos, H. E. Vaughan, “The marriage problem”, Amer. J. Math., 72:1 (1950), 214–215 | DOI | MR | Zbl
[53] G. Higman, Finitely presented infinite simple groups, Notes on Pure Math., 8, Austral. Nat. Univ., Canberra, 1974, vii+82 pp. | MR | Zbl
[54] H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92:2 (1959), 336–354 | DOI | MR | Zbl
[55] H. Kesten, “Full Banach mean values on countable groups”, Math. Scand., 7 (1959), 146–156 | DOI | MR | Zbl
[56] R. McKenzie, R. J. Thompson, “An elementary construction of unsolvable word problems in group theory”, Word problems: decision problems and the Burnside problem in group theory (Irvine, CA, 1969), Stud. Logic Found. Math., 71, North-Holland, Amsterdam, 1973, 457–478 | DOI | MR | Zbl
[57] L. Mirsky, Transversal theory. An account of some aspects of combinatorial mathematics, Math. Sci. Eng., 75, Academic Press, New York–London, 1971, ix+255 pp. | MR | Zbl
[58] J. T. Moore, “Fast growth in the Følner function for Thompson's group $F$”, Groups Geom. Dyn., 7:3 (2013), 633–651 | DOI | MR | Zbl
[59] Dzh. fon Neiman, “K obschei teorii mery”, Izbrannye trudy po funktsionalnomu analizu, v. 1, Nauka, M., 1987, 171–200 ; “ДобавлРμРЅРёРμ”, 201 ; J. von Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116 ; “Zusatz”, 333 ; Collected works, v. 1, Pergamon Press, New York–Oxford–London–Paris, 1961, 599–643 | MR | Zbl | DOI | Zbl | DOI | Zbl | MR | Zbl
[60] A. Yu. Ol'shanskii, “On the problem of the existence of an invariant mean on a group”, Russian Math. Surveys, 35:4 (1980), 180–181 | DOI | MR | Zbl
[61] A. Yu. Ol'shanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 96 (2003), 43–169 | DOI | MR | Zbl
[62] O. Ore, “Linear equations in non-commutative fields”, Ann. of Math. (2), 32:3 (1931), 463–477 | DOI | MR | Zbl
[63] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. I, Grundlehren Math. Wiss., 19, Reihen. Integralrechnung. Funktionentheorie, 3. bericht. Aufl., Springer-Verlag, Berlin–New York, 1964, xvi+338 pp. | DOI | MR | MR | Zbl
[64] M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp. | DOI | MR | Zbl
[65] Zh.-P. Serr, “Derevya, amalgamy i ${SL}_2$”, Matematika, 18:1 (1974), 3–51 ; 18:2, 3–27 ; J.-P. Serre, Arbres, amalgames, $\mathrm{SL}_2$, Rédigé avec la collaboration de H. Bass, Astérisque, 46, Soc. Math. France, Paris, 1977, 189 pp. ; J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980, ix+142 СЃ. | Zbl | Zbl | MR | Zbl | MR | Zbl
[66] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, 1999, xii+581 pp. | DOI | MR | Zbl
[67] R. Szwarc, “A short proof of the Grigorchuk–Cohen cogrowth theorem”, Proc. Amer. Math. Soc., 106:3 (1989), 663–665 | DOI | MR | Zbl
[68] D. Tamari, “A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept”, Proceedings of the international congress of mathematicians (Amsterdam, 1954), v. 1, P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, 439–440 | Zbl
[69] S. Wagon, The Banach–Tarski paradox, Encyclopedia Math. Appl., 24, Camdridge Univ. Press, Cambridge, 1985, xvi+251 pp. | DOI | MR | Zbl