The normal derivative lemma and surrounding issues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 189-249

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey we describe the history and current state of one of the key areas in the qualitative theory of elliptic partial differential equations related to the strong maximum principle and the boundary point principle (normal derivative lemma). Bibliography: 234 titles.
Keywords: strong maximum principle, normal derivative lemma, Hopf–Oleinik lemma, Harnack inequality, Aleksandrov–Bakelman maximum principle.
@article{RM_2022_77_2_a0,
     author = {D. E. Apushkinskaya and A. I. Nazarov},
     title = {The normal derivative lemma and surrounding issues},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {189--249},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - A. I. Nazarov
TI  - The normal derivative lemma and surrounding issues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 189
EP  - 249
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/
LA  - en
ID  - RM_2022_77_2_a0
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A A. I. Nazarov
%T The normal derivative lemma and surrounding issues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 189-249
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/
%G en
%F RM_2022_77_2_a0
D. E. Apushkinskaya; A. I. Nazarov. The normal derivative lemma and surrounding issues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 189-249. http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/