The normal derivative lemma and surrounding issues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 189-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this survey we describe the history and current state of one of the key areas in the qualitative theory of elliptic partial differential equations related to the strong maximum principle and the boundary point principle (normal derivative lemma). Bibliography: 234 titles.
Keywords: strong maximum principle, normal derivative lemma, Hopf–Oleinik lemma, Harnack inequality, Aleksandrov–Bakelman maximum principle.
@article{RM_2022_77_2_a0,
     author = {D. E. Apushkinskaya and A. I. Nazarov},
     title = {The normal derivative lemma and surrounding issues},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {189--249},
     year = {2022},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - A. I. Nazarov
TI  - The normal derivative lemma and surrounding issues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 189
EP  - 249
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/
LA  - en
ID  - RM_2022_77_2_a0
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A A. I. Nazarov
%T The normal derivative lemma and surrounding issues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 189-249
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/
%G en
%F RM_2022_77_2_a0
D. E. Apushkinskaya; A. I. Nazarov. The normal derivative lemma and surrounding issues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 2, pp. 189-249. http://geodesic.mathdoc.fr/item/RM_2022_77_2_a0/

[1] C. F. Gauss, Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstoßungs-Kräfte, Wiedmannschen Buchhandlung, Leipzig, 1840, 51 pp.

[2] S. Zaremba, “Sur un problème mixte relatif à l'équation de Laplace”, Bull. Acad. Sci. Cracovie. Cl. Sci. Math. Nat. Ser. A, 1910, 313–344 | MR | Zbl | Zbl

[3] A. Harnack, Die Grundlagen der Theorie des logarithmischen Potentiales und der eindeutigen Potentialfunction in der Ebene, Teubner, Leipzig, 1887, 158 pp. | Zbl

[4] G. Kresin, V. Maz'ya, On sharp Agmon–Miranda maximum principles, 2020, 20 pp., arXiv: 2009.01805

[5] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Corr. reprint of the 1967 original, Springer-Verlag, New York, 1984, x+261 pp. | DOI | MR | Zbl

[6] R. P. Sperb, Maximum principles and their applications, Math. Sci. Eng., 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, ix+224 pp. | MR | Zbl

[7] V. A. Kondrat'ev, E. M. Landis, “Qualitative theory of second order linear partial differential equations”, Partial differential equations III, Encyclopaedia Math. Sci., 32, Springer, Berlin, 1991, 87–192 | MR | Zbl

[8] M. Bramanti, “Potential theory for stationary Schrödinger operators: a survey of results obtained with non-probabilistic methods”, Matematiche (Catania), 47:1 (1992), 25–61 | MR | Zbl

[9] L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Math., 128, Cambridge Univ. Press, Cambridge, 2000, x+340 pp. | DOI | MR | Zbl

[10] P. Pucci, J. Serrin, “The strong maximum principle revisited”, J. Differential Equations, 196:1 (2004), 1–66 | DOI | MR | Zbl

[11] A. I. Nazarov, “The A. D. Aleksandrov maximum principle”, J. Math. Sci. (N. Y.), 142:3 (2007), 2154–2171 | DOI | MR | Zbl

[12] M. Kassmann, “Harnack inequalities: an introduction”, Bound. Value Probl., 2007 (2007), 081415, 21 pp. | DOI | MR | Zbl

[13] P. Pucci, J. Serrin, The maximum principle, Progr. Nonlinear Differential Equations Appl., 73, Birkhäuser Verlag, Basel, 2007, x+235 pp. | DOI | MR | Zbl

[14] R. Alvarado, D. Brigham, V. Maz'ya, M. Mitrea, E. Ziadé, “On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf–Oleinik boundary point principle”, J. Math. Sci. (N. Y.), 176:3 (2011), 281–360 | DOI | MR | Zbl

[15] D. E. Apushkinskaya, A. I. Nazarov, “A counterexample to the Hopf–Oleinik lemma (elliptic case)”, Anal. PDE, 9:2 (2016), 439–458 | DOI | MR | Zbl

[16] D. E. Apushkinskaya, A. I. Nazarov, “On the boundary point principle for divergence-type equations”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30:4 (2019), 677–699 | DOI | MR | Zbl

[17] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. ; North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl

[18] A. I. Nazarov, N. N. Ural'tseva, “Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation”, J. Soviet Math., 37 (1987), 851–859 | DOI | MR | Zbl

[19] N. G. Kuznetsov, “Mean value properties of harmonic functions and related topics (a survey)”, J. Math. Sci. (N. Y.), 242:2 (2019), 177–199 | DOI | MR | Zbl

[20] E. Hopf, “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 19 (1927), 147–152 | Zbl

[21] G. Giraud, “Généralisation des problèmes sur les opérations du type elliptique”, Bull. Sci. Math. (2), 56 (1932), 316–352 | Zbl

[22] G. Giraud, “Problèmes de valeurs à la frontière relatifs à certaines données discontinues”, Bull. Soc. Math. France, 61 (1933), 1–54 | DOI | MR | Zbl

[23] L. I. Kamynin, B. N. Khimchenko, “The maximum principle for an elliptic-parabolic equation of the second order”, Siberian Math. J., 13:4 (1972), 533–545 | DOI | MR | Zbl

[24] E. Hopf, “A remark on linear elliptic differential equations of second order”, Proc. Amer. Math. Soc., 3:5 (1952), 791–793 | DOI | MR | Zbl

[25] O. A. Oleinik, “O svoistvakh reshenii nekotorykh kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Matem. sb., 30(72):3 (1952), 695–702 | MR | Zbl

[26] B. Gidas, Wei-Ming Ni, L. Nirenberg, “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68:3 (1979), 209–243 | DOI | MR | Zbl

[27] E. M. Landis, “$s$-capacity and its applications to the study of solutions of a second-order elliptic equation with discontinuous coefficients”, Math. USSR-Sb., 5:2 (1968), 177–204 | DOI | MR | Zbl

[28] E. M. Landis, Second order equations of elliptic and parabolic type, Transl. Math. Monogr., 171, Amer. Math. Soc., Providence, RI, 1998, xii+203 pp. | DOI | MR | MR | Zbl | Zbl

[29] C. Pucci, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico. I”, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 23:6 (1957), 370–375 ; II, 24:1 (1958), 3–6 | MR | Zbl

[30] A. D. Aleksandrov, “Issledovaniya o printsipe maksimuma. I”, Izv. vuzov. Matem., 1958, no. 5, 126–157 ; II, 1959, No 3, 3–12 ; III, 1959, No 5, 16–32 ; IV, 1960, No 3, 3–15 ; V, 1960, No 5, 16–26 ; VI, 1961, No 1, 3–20 | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR | MR

[31] R. Výborný, “On a certain extension of the maximum principle”, Differential equations and their applications (Prague, 1962), Publ. House Czech. Acad. Sci., Prague; Academic Press, New York, 1963, 223–228 | MR | Zbl

[32] R. Výborný, “Über das erweiterte {M}aximumprinzip”, Czech. Math. J., 14 (1964), 116–120 | DOI | MR | Zbl

[33] G. M. Lieberman, “Regularized distance and its applications”, Pacific J. Math., 117:2 (1985), 329–352 | DOI | MR | Zbl

[34] K.-O. Widman, “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand., 21 (1967), 17–37 | DOI | MR | Zbl

[35] G. M. Verzhbinskii, V. G. Maz'ya, “Asymptotic behavior of solutions of the Dirichlet problem near a nonregular boundary”, Soviet Math. Dokl., 8 (1967), 1110–1113 | MR | Zbl

[36] B. N. Khimchenko, “The behavior of the superharmonic function near the boundary of a domain of type $A^{(1)}$”, Differ. Equ., 5(1969) (1972), 1371–1378 | MR | Zbl

[37] B. N. Khimchenko, “On the behavior of solutions of elliptic equations near the boundary of a domain of type $A^{(1)}$”, Soviet Math. Dokl., 11 (1970), 943–944 | MR | Zbl

[38] L. I. Kamynin, B. N. Khimchenko, “Theorems of the Giraud type for second-order equations with weakly degenerate nonnegative characteristic part”, Siberian Math. J., 18:1 (1977), 76–91 | DOI | MR | Zbl

[39] Sungwon Cho, Boo Rim Choe, Hyungwoon Koo, “Weak Hopf lemma for the invariant Laplacian and related elliptic operators”, J. Math. Anal. Appl., 408:2 (2013), 576–588 | DOI | MR | Zbl

[40] N. S. Nadirashvili, “On the question of the uniqueness of the solution of the second boundary value problem for second order elliptic equations”, Math. USSR-Sb., 50:2 (1985), 325–341 | DOI | MR | Zbl

[41] L. I. Kamynin, “A theorem on the internal derivative for a weakly degenerate second-order elliptic equation”, Math. USSR-Sb., 54:2 (1986), 297–316 | DOI | MR | Zbl

[42] G. M. Lieberman, “The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data”, Comm. Partial Differential Equations, 11:2 (1986), 167–229 | DOI | MR | Zbl

[43] A. D. Aleksandrov, “Certain estimates for the Dirichlet problem”, Soviet Math. Dokl., 1 (1961), 1151–1154 | MR | Zbl

[44] I. Ya. Bakelman, “K teorii kvazilineinykh ellipticheskikh uravnenii”, Sib. matem. zhurn., 2:2 (1961), 179–186 | MR | Zbl

[45] I. J. Bakelman, Convex analysis and nonlinear geometric elliptic equations, Springer-Verlag, Berlin, 1994, xxii+510 pp. | DOI | MR | Zbl

[46] I. Ya. Bakelman, “Zadacha Dirikhle dlya uravnenii tipa Monzha–Ampera i ikh $n$-mernykh analogov”, Dokl. AN SSSR, 126 (1959), 923–926 | MR | Zbl

[47] I. Ya. Bakelman, Pervaya kraevaya zadacha dlya nelineinykh ellipticheskikh uravnenii, Diss. ... dokt. fiz.-matem. nauk, LGPI im. A. I. Gertsena, L., 1959

[48] A. D. Aleksandrov, “Usloviya edinstvennosti i otsenki resheniya zadachi Dirikhle”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 18:13(3) (1963), 5–29 | MR | Zbl

[49] C. Pucci, “Su una limitazione per soluzioni di equazioni ellittiche”, Boll. Un. Mat. Ital. (3), 21 (1966), 228–233 | MR | Zbl

[50] C. Pucci, “Limitazioni per soluzioni di equazioni ellittiche”, Ann. Mat. Pura Appl. (4), 74 (1966), 15–30 | DOI | MR | Zbl

[51] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[52] A. D. Aleksandrov, “Mazhorirovanie reshenii lineinykh uravnenii vtorogo poryadka”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 21:1(1) (1966), 5–25 | MR | Zbl

[53] A. D. Aleksandrov, “General method for majorizing the solutions of the Dirichlet problem”, Siberian Math. J., 7:3 (1966), 394–403 | DOI | MR | Zbl

[54] A. D. Aleksandrov, “O mazhorantakh reshenii i usloviyakh edinstvennosti dlya ellipticheskikh uravnenii”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 21:7(2) (1966), 5–20 | MR | Zbl

[55] A. D. Aleksandrov, “Nevozmozhnost obschikh otsenok reshenii i uslovii edinstvennosti dlya lineinykh uravnenii s normami, bolee slabymi, chem $L_n$”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 21:13(3) (1966), 5–10 | MR | Zbl

[56] A. D. Aleksandrov, “Nekotorye otsenki reshenii zadachi Dirikhle”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 22:7(2) (1967), 19–29 | MR | Zbl

[57] N. V. Krylov, “Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation”, Siberian Math. J., 17:2 (1976), 226–236 | DOI | MR | Zbl

[58] N. S. Nadirashvili, “Some estimates in a problem with oblique derivative”, Math. USSR-Izv., 33:2 (1989), 403–411 | DOI | MR | Zbl

[59] A. I. Nazarov, “Hölder estimates for bounded solutions of problems with an oblique derivative for parabolic equations of nondivergence structure”, J. Soviet Math., 64:6 (1993), 1247–1252 | DOI | MR | Zbl

[60] G. M. Lieberman, “The maximum principle for equations with composite coefficients”, Electron. J. Differential Equations, 2000, 38, 17 pp. | MR | Zbl

[61] Yousong Luo, “An Aleksandrov–Bakelman type maximum principle and applications”, J. Differential Equations, 101:2 (1993), 213–231 | DOI | MR | Zbl

[62] Yousong Luo, N. S. Trudinger, “Linear second order elliptic equations with Venttsel boundary conditions”, Proc. Roy. Soc. Edinburgh Sect. A, 118:3-4 (1991), 193–207 | DOI | MR | Zbl

[63] D. E. Apushkinskaya, A. I. Nazarov, “Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel boundary condition”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc., Providence, RI, 1995, 1–13 | DOI | MR | Zbl

[64] D. E. Apushkinskaya, A. I. Nazarov, “Hölder estimates for solutions to the degenerate boundary-value Venttsel' problem for parabolic and elliptic equations of nondivergence type”, J. Math. Sci. (N. Y.), 97:4 (1999), 4177–4188 | DOI | MR | Zbl

[65] D. E. Apushkinskaya, A. I. Nazarov, “Linear two-phase Venttsel problems”, Ark. Mat., 39:2 (2001), 201–222 | DOI | MR | Zbl

[66] D. E. Apushkinskaya, A. I. Nazarov, “Boundary estimates for the first-order derivatives of a solution to a nondivergent parabolic equation with composite right-hand side and coefficients of lower-order derivatives”, J. Math. Sci. (N. Y.), 77:4 (1995), 3257–3276 | DOI | MR | Zbl

[67] A. I. Nazarov, “Boundary estimates for solutions to Venttsel's problem for parabolic and elliptic equations in a domain with boundary of class $W^2_{q-1}$”, J. Math. Sci. (N. Y.), 112:1 (2002), 4048–4064 | DOI | MR | Zbl

[68] A. I. Nazarov, “Estimates of the maximum for solutions of elliptic and parabolic equations in terms of weighted norms of the right-hand side”, St. Petersburg Math. J., 13:2 (2002), 269–279 | MR | Zbl

[69] L. Caffarelli, “Elliptic second order equations”, Rend. Sem. Mat. Fis. Milano, 58 (1988), 253–284 | DOI | MR | Zbl

[70] L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995, vi+104 pp. | DOI | MR | Zbl

[71] E. B. Fabes, D. W. Stroock, “The $L^p$-integrability of {G}reen's functions and fundamental solutions for elliptic and parabolic equations”, Duke Math. J., 51:4 (1984), 997–1016 | DOI | MR | Zbl

[72] C. E. Kenig, N. S. Nadirashvili, “On optimal estimates for some oblique derivative problems”, J. Funct. Anal., 187:1 (2001), 70–93 | DOI | MR | Zbl

[73] G. M. Lieberman, “Maximum estimates for oblique derivative problems with right hand side in $L^p$, $p$”, Manuscripta Math., 112:4 (2003), 459–472 | DOI | MR | Zbl

[74] C. Pucci, “Operatori ellittici estremanti”, Ann. Mat. Pura Appl. (4), 72 (1966), 141–170 | DOI | MR | Zbl

[75] K. Puchchi, “Maksimiziruyuschie ellipticheskie operatory, prilozheniya i gipotezy”, Differentsialnye uravneniya s chastnymi proizvodnymi (Novosibirsk, 1983), Nauka, Novosibirsk, 1986, 167–172 | MR | Zbl

[76] K. Astala, T. Iwaniec, G. Martin, “Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane”, J. Reine Angew. Math., 2006:591 (2006), 49–74 | DOI | MR | Zbl

[77] S. Koike, “On the ABP maximum principle and applications”, Suurikaisekikenkyusho Kokyuroku, 1845 (2013), 107–120

[78] Hung-Ju Kuo, N. S. Trudinger, “New maximum principles for linear elliptic equations”, Indiana Univ. Math. J., 56:5 (2007), 2439–2452 | DOI | MR | Zbl

[79] N. S. Trudinger, “Remarks on the {P}ucci conjecture”, Indiana Univ. Math. J., 69:1 (2020), 109–118 | DOI | MR | Zbl

[80] X. Cabré, “On the Alexandroff–Bakelman–Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations”, Comm. Pure Appl. Math., 48:5 (1995), 539–570 | DOI | MR | Zbl

[81] A. I. Nazarov, N. N. Ural'tseva, Qualitative properties of solutions to elliptic and parabolic equations with unbounded lower-order coefficients, Preprinty S.-Peterb. matem. o-va, elektron. arkhiv, No 2009-05, SPbMO, SPb., 2009, 6 pp. http://www.mathsoc.spb.ru/preprint/index.html

[82] M. V. Safonov, “Non-divergence elliptic equations of second order with unbounded drift”, Nonlinear partial differential equations and related topics, Amer. Math. Soc. Transl. Ser. 2, 229, Adv. Math. Sci., 64, Amer. Math. Soc., Providence, RI, 2010, 211–232 | DOI | MR | Zbl

[83] A. I. Nazarov, “A centennial of the Zaremba–Hopf–Oleinik lemma”, SIAM J. Math. Anal., 44:1 (2012), 437–453 | DOI | MR | Zbl

[84] O. A. Ladyzhenskaya, N. N. Ural'tseva, “Estimates on the boundary of a domain for the first derivatives of functions satisfying an elliptic or parabolic inequality”, Proc. Steklov Inst. Math., 179 (1989), 109–135 | MR | Zbl

[85] M. V. Safonov, Boundary estimates for positive solutions to second order elliptic equations, 2008, 20 pp., arXiv: 0810.0522

[86] M. V. Safonov, “On the boundary estimates for second-order elliptic equations”, Complex Var. Elliptic Equ., 63:7-8 (2018), 1123–1141 | DOI | MR | Zbl

[87] E. M. Landis, “Harnack's inequality for second-order elliptic equations of Cordes type”, Soviet Math. Dokl., 9 (1968), 540–543 | MR | Zbl

[88] N. V. Krylov, M. V. Safonov, “A certain property of solutions of parabolic equations with measurable coefficients”, Math. USSR-Izv., 16:1 (1981), 151–164 | DOI | MR | Zbl

[89] M. V. Safonov, “Harnack's inequality for elliptic equations and the Hölder property of their solutions”, J. Soviet Math., 21:5 (1983), 851–863 | DOI | MR | Zbl

[90] O. A. Ladyzhenskaya, N. N. Ural'tseva, “A survey of results on the solubility of boundary-value problems for second-order uniformly elliptic and parabolic quasi-linear equations having unbounded singularities”, Russian Math. Surveys, 41:5 (1986), 1–31 | DOI | MR | Zbl

[91] E. Ferretti, M. V. Safonov, “Growth theorems and Harnack inequality for second order parabolic equations”, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2001, 87–112 | DOI | MR | Zbl

[92] St. Petersburg Math. J., 27:3 (2016), 509–522 | DOI | MR | Zbl

[93] Gong Chen, M. Safonov, “On second order elliptic and parabolic equations of mixed type”, J. Funct. Anal., 272:8 (2017), 3216–3237 | DOI | MR | Zbl

[94] St. Petersburg Math. J., 32:4 (2021), 809–818 | DOI | MR | Zbl

[95] Doyoon Kim, Seungjin Ryu, “The weak maximum principle for second-order elliptic and parabolic conormal derivative problems”, Commun. Pure Appl. Anal., 19:1 (2020), 493–510 | DOI | MR | Zbl

[96] L. Escauriaza, “Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form”, Comm. Partial Differential Equations, 25:5-6 (2000), 821–845 | DOI | MR | Zbl

[97] V. Maz'ya, R. McOwen, “Asymptotics for solutions of elliptic equations in double divergence form”, Comm. Partial Differential Equations, 32:2 (2007), 191–207 | DOI | MR | Zbl

[98] J. Moser, “On Harnack's theorem for elliptic differential equations”, Comm. Pure Appl. Math., 14:3 (1961), 577–591 | DOI | MR | Zbl

[99] E. DiBenedetto, N. S. Trudinger, “Harnack inequalities for quasi-minima of variational integrals”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1:4 (1984), 295–308 | DOI | MR | Zbl

[100] E. De Giorgi, “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43 | MR | Zbl

[101] G. Stampacchia, “Le problème de {D}irichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15:1 (1965), 189–257 | DOI | MR | Zbl

[102] J. Serrin, “Local behavior of solutions of quasi-linear equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[103] J. Moser, “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[104] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl

[105] A. I. Nazarov, N. N. Uraltseva, “The Harnack inequality and related properties for solutions of elliptic and parabolic equations with divergence-free lower-order coefficients”, St. Petersburg Math. J., 23:1 (2012), 93–115 | DOI | MR | Zbl

[106] N. Filonov, “On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 43, Zap. nauch. sem. POMI, 410, POMI, SPb., 2013, 168–186 | MR | Zbl

[107] D. E. Apushkinskaya, A. I. Nazarov, D. K. Palagachev, L. G. Softova, “Venttsel boundary value problems with discontinuous data”, SIAM J. Math. Anal., 53:1 (2021), 221–252 | DOI | MR | Zbl

[108] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | MR | MR | Zbl | Zbl

[109] N. S. Trudinger, “On the regularity of generalized solutions of linear, non-uniformly elliptic equations”, Arch. Ration. Mech. Anal., 42 (1971), 50–62 | DOI | MR | Zbl

[110] N. S. Trudinger, “Linear elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 27 (1973), 265–308 | MR | Zbl

[111] P. Bella, M. Schäffner, “Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations”, Comm. Pure Appl. Math., 74:3 (2021), 453–477 | DOI | MR | Zbl

[112] B. Franchi, R. Serapioni, F. Serra Cassano, “Irregular solutions of linear degenerate elliptic equations”, Potential Anal., 9:3 (1998), 201–216 | DOI | MR | Zbl

[113] E. B. Fabes, C. E. Kenig, R. P. Serapioni, “The local regularity of solutions of degenerate elliptic equations”, Comm. Partial Differential Equations, 7:1 (1982), 77–116 | DOI | MR | Zbl

[114] V. De Cicco, M. A. Vivaldi, “Harnack inequalities for Fuchsian type weighted elliptic equations”, Comm. Partial Differential Equations, 21:9-10 (1996), 1321–1347 | DOI | MR | Zbl

[115] S. Chanillo, R. L. Wheeden, “Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations”, Comm. Partial Differential Equations, 11:10 (1986), 1111–1134 | DOI | MR | Zbl

[116] F. Chiarenza, A. Rustichini, R. Serapioni, “De Giorgi–Moser theorem for a class of degenerate non-uniformly elliptic equations”, Comm. Partial Differential Equations, 14:5 (1989), 635–662 | DOI | MR | Zbl

[117] M. Schechter, “On the invariance of the essential spectrum of an arbitrary operator. III”, Proc. Cambridge Philos. Soc., 64:4 (1968), 975–984 | DOI | MR | Zbl

[118] M. Schechter, Spectra of partial differential operators, North-Holland Ser. Appl. Math. Mech., 14, 2nd ed., North-Holland Publishing Co., Amsterdam, 1986, xiv+310 pp. | MR | Zbl

[119] F. Stummel, “Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen”, Math. Ann., 132 (1956), 150–176 | DOI | MR | Zbl

[120] T. Kato, “Schr{ö}dinger operators with singular potentials”, Israel J. Math., 13 (1972), 135–148 | DOI | MR | Zbl

[121] Quan Zheng, Xiaohua Yao, “Higher-order Kato class potentials for Schrödinger operators”, Bull. Lond. Math. Soc., 41:2 (2009), 293–301 | DOI | MR | Zbl

[122] M. Aizenman, B. Simon, “Brownian motion and Harnack inequality for Schrödinger operators”, Comm. Pure Appl. Math., 35:2 (1982), 209–273 | DOI | MR | Zbl

[123] F. Chiarenza, E. Fabes, N. Garofalo, “Harnack's inequality for Schrödinger operators and the continuity of solutions”, Proc. Amer. Math. Soc., 98:3 (1986), 415–425 | DOI | MR | Zbl

[124] M. Cranston, E. Fabes, Z. Zhao, “Conditional gauge and potential theory for the Schrödinger operator”, Trans. Amer. Math. Soc., 307:1 (1988), 171–194 | DOI | MR | Zbl

[125] K. Kurata, “Continuity and {H}arnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana Univ. Math. J., 43:2 (1994), 411–440 | DOI | MR | Zbl

[126] M. Cranston, Z. Zhao, “Conditional transformation of drift formula and potential theory for $\frac12\Delta+b(\,\cdot\,)\cdot \nabla$”, Comm. Math. Phys., 112:4 (1987), 613–625 | DOI | MR | Zbl

[127] P. Zamboni, “Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions”, J. Differential Equations, 182:1 (2002), 121–140 | DOI | MR | Zbl

[128] Qi Zhang, “A Harnack inequality for the equation $\nabla(a\nabla u)+b\nabla u=0$, when $|b|\in K_{n+1}$”, Manuscripta Math., 89:1 (1996), 61–77 | DOI | MR | Zbl

[129] M. Grüter, K.-O. Widman, “The Green function for uniformly elliptic equations”, Manuscripta Math., 37:3 (1982), 303–342 | DOI | MR | Zbl

[130] V. Kozlov, A. Nazarov, “A comparison theorem for nonsmooth nonlinear operators”, Potential Anal., 54:3 (2021), 471–481 | DOI | MR | Zbl

[131] Qi S. Zhang, “A strong regularity result for parabolic equations”, Comm. Math. Phys., 244:2 (2004), 245–260 | DOI | MR | Zbl

[132] G. Koch, N. Nadirashvili, G. A. Seregin, V. Šverák, “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl

[133] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, “On divergence-free drifts”, J. Differential Equations, 252:1 (2012), 505–540 | DOI | MR | Zbl

[134] N. Filonov, T. Shilkin, “On some properties of weak solutions to elliptic equations with divergence-free drifts”, Mathematical analysis in fluid mechanics: selected recent results, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018, 105–120 | DOI | MR | Zbl

[135] N. D. Filonov, P. A. Khodunov, “O lokalnoi ogranichennosti reshenii uravneniya $-\Delta u+a\partial_z u=0$”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 49, K yubileyu Grigoriya Aleksandrovicha Seregina, Zap. nauch. sem. POMI, 508, POMI, SPb., 2021, 173–184

[136] R. Finn, D. Gilbarg, “Asymptotic behavior and uniqueness of plane subsonic flows”, Comm. Pure Appl. Math., 10 (1957), 23–63 | DOI | MR | Zbl

[137] V. Kozlov, N. Kuznetsov, “A comparison theorem for super- and subsolutions of $\nabla^2 u+f(u)=0$ and its application to water waves with vorticity”, Algebra i analiz, 30:3 (2018), 112–128 ; St. Petersburg Math. J., 30:3 (2019), 471–483 | MR | Zbl | DOI

[138] V. Kozlov, V. Maz'ya, “Asymptotic formula for solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients near the boundary”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2:3 (2003), 551–600 | MR | Zbl

[139] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 43–77 | MR | Zbl

[140] Yu. Alkhutov, M. Surnachev, “Global Green's function estimates for the convection-diffusion equation”, Complex Var. Elliptic Equ., 2020, 1–30, Publ. online | DOI

[141] A. D. Aleksandrov, “Teoremy edinstvennosti dlya poverkhnostei ‘v tselom’. I”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 11:19(4) (1956), 5–17 ; II, 12:7(2) (1957), 15–44 ; III, 13:7(2) (1958), 14–26 ; IV, 13:13(3) (1958), 27–34 ; V, 13:19(4) (1958), 5–8 ; VI, 14:1(1) (1959), 5–13 ; VII, 15:7(2) (1960), 5–13 ; A. D. Aleksandrov, “Uniqueness theorems for surfaces in the large. I”, Amer. Math. Soc. Transl. Ser. 2, 21, Amer. Math. Soc., Providence, RI, 1962, 341–354 ; II, 354–388 ; III, 389–403 ; IV, 403–411 ; V, 412–416 | MR | Zbl | MR | MR | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | Zbl

[142] Yan Yan Li, L. Nirenberg, “A geometric problem and the Hopf lemma. I”, J. Eur. Math. Soc. (JEMS), 8:2 (2006), 317–339 | DOI | MR | Zbl

[143] P. L. Lions, “Two geometrical properties of solutions of semilinear problems”, Appl. Anal., 12:4 (1981), 267–272 | DOI | MR | Zbl

[144] B. Gidas, Wei Ming Ni, L. Nirenberg, “Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$”, Mathematical analysis and applications, Part A, Adv. Math. Suppl. Stud., 7, Academic Press, New York–London, 1981, 369–402 | MR | Zbl

[145] H. Berestycki, L. Nirenberg, “On the method of moving planes and the sliding method”, Bol. Soc. Brasil. Mat. (N. S.), 22:1 (1991), 1–37 | DOI | MR | Zbl

[146] L. Damascelli, F. Pacella, M. Ramaswamy, “A strong maximum principle for a class of non-positone singular elliptic problems”, NoDEA Nonlinear Differential Equations Appl., 10:2 (2003), 187–196 | DOI | MR | Zbl

[147] F. Esposito, B. Sciunzi, “On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications”, J. Funct. Anal., 278:4 (2020), 108346, 25 pp. | DOI | MR | Zbl

[148] Yanyan Li, Meijun Zhu, “Uniqueness theorems through the method of moving spheres”, Duke Math. J., 80:2 (1995), 383–417 | DOI | MR | Zbl

[149] A. Aeppli, “On the uniqueness of compact solutions for certain elliptic differential equations”, Proc. Amer. Math. Soc., 11 (1960), 826–832 | DOI | MR | Zbl

[150] J. Serrin, “On surfaces of constant mean curvature which span a given space curve”, Math. Z., 112 (1969), 77–88 | DOI | MR | Zbl

[151] V. I. Oliker, “Hypersurfaces in $\mathbb{R}^{n+1}$ with prescribed Gaussian curvature and related equations of Monge–Ampère type”, Comm. Partial Differential Equations, 9:8 (1984), 807–838 | DOI | MR | Zbl

[152] R. Musina, “Planar loops with prescribed curvature: existence, multiplicity and uniqueness results”, Proc. Amer. Math. Soc., 139:12 (2011), 4445–4459 | DOI | MR | Zbl

[153] X. Cabré, “Equacions en derivades parcials, geometria i control estocàstic”, Butl. Soc. Catalana Mat., 15:1 (2000), 7–27 | MR

[154] X. Cabré, “Elliptic PDE's in probability and geometry: symmetry and regularity of solutions”, Discrete Contin. Dyn. Syst., 20:3 (2008), 425–457 | DOI | MR | Zbl

[155] X. Cabré, X. Ros-Oton, J. Serra, “Sharp isoperimetric inequalities via the ABP method”, J. Eur. Math. Soc. (JEMS), 18:12 (2016), 2971–2998 | DOI | MR | Zbl

[156] X. Cabré, “Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations”, Discrete Contin. Dyn. Syst., 8:2 (2002), 331–359 | DOI | MR | Zbl

[157] E. Phragmén, E. Lindelöf, “Sur une extension d'un principe classique de l'analyse et sur quelques propriétés de fonctions monogènes dans le voisinage d'un point singulier”, Acta Math., 31:1 (1908), 381–406 | DOI | MR | Zbl

[158] E. M. Landis, “Some questions in the qualitative theory of elliptic and parabolic equations”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 173–238 | DOI | MR | MR | Zbl | Zbl

[159] E. M. Landis, “Some problems of the qualitative theory of second order elliptic equations (case of several independent variables)”, Russian Math. Surveys, 18:1 (1963), 1–62 | DOI | MR | Zbl

[160] E. M. Landis, “O nekotorykh svoistvakh reshenii ellipticheskikh uravnenii”, v st.: “Zasedaniya Moskovskogo matematicheskogo obschestva”, UMN, 11:2(68) (1956), 235–237

[161] V. G. Maz'ya, “Behavior, near the boundary, of solutions of the Dirichlet problem for a second-order elliptic equation in divergent form”, Math. Notes, 2:2 (1967), 610–617 | DOI | MR | Zbl

[162] G. N. Blohina, “Theorems of Phragmén–Lindelöf type for linear elliptic equations of second order”, Math. USSR-Sb., 11:4 (1970), 467–490 | DOI | MR | Zbl

[163] V. G. Mazya, “O nepreryvnosti v granichnoi tochke resheniya kvazilineinykh ellipticheskikh uravnenii”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 25:13(3) (1970), 42–55 | MR | Zbl

[164] A. I. Ibragimov, E. M. Landis, “On the behavior of solutions to the Neumann problem in unbounded domains”, J. Math. Sci. (N. Y.), 85:6 (1997), 2373–2384 | DOI | MR | Zbl

[165] A. I. Ibragimov, E. M. Landis, “Zaremba's problem for elliptic equations in the neighbourhood of a singular point or at infinity”, Appl. Anal., 67:3-4 (1997), 269–282 | DOI | MR | Zbl

[166] Dat Cao, A. Ibraguimov, A. I. Nazarov, “Mixed boundary value problems for non-divergence type elliptic equations in unbounded domains”, Asymptot. Anal., 109:1-2 (2018), 75–90 | DOI | MR | Zbl

[167] B. Sirakov, P. Souplet, “The Vázquez maximum principle and the Landis conjecture for elliptic PDE with unbounded coefficients”, Adv. Math., 387 (2021), 107838, 27 pp. | DOI | MR | Zbl

[168] A. Logunov, E. Malinnikova, N. Nadirashvili, F. Nazarov, The Landis conjecture on exponential decay, 2020, 40 pp., arXiv: 2007.07034

[169] N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain”, Math. USSR-Izv., 22:1 (1984), 67–97 | DOI | MR | Zbl

[170] H. Kim, M. Safonov, “Boundary Harnack principle for second order elliptic equations with unbounded drift”, J. Math. Sci. (N. Y.), 179:1 (2011), 127–143 | DOI | MR | Zbl

[171] R. F. Bass, K. Burdzy, “A boundary Harnack principle in twisted Hölder domains”, Ann. of Math. (2), 134:2 (1991), 253–276 | DOI | MR | Zbl

[172] H. Kim, M. Safonov, “Carleson type estimates for second order elliptic equations with unbounded drift”, J. Math. Sci. (N. Y.), 176:6 (2011), 928–944 | DOI | MR | Zbl

[173] B. E. J. Dahlberg, “Estimates of harmonic measure”, Arch. Ration. Mech. Anal., 65:3 (1977), 275–288 | DOI | MR | Zbl

[174] D. S. Jerison, C. E. Kenig, “Boundary behavior of harmonic functions in non-tangentially accessible domains”, Adv. Math., 46:1 (1982), 80–147 | DOI | MR | Zbl

[175] H. Aikawa, “Boundary {H}arnack principle and {M}artin boundary for a uniform domain”, J. Math. Soc. Japan, 53:1 (2001), 119–145 | DOI | MR | Zbl

[176] A. Ancona, “Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien”, Ann. Inst. Fourier (Grenoble), 28:4 (1978), 169–213 | DOI | MR | Zbl

[177] L. Caffarelli, E. Fabes, S. Mortola, S. Salsa, “Boundary behavior of nonnegative solutions of elliptic operators in divergence form”, Indiana Univ. Math. J., 30:4 (1981), 621–640 | DOI | MR | Zbl

[178] R. Bañuelos, R. F. Bass, K. Burdzy, “Hölder domains and the boundary Harnack principle”, Duke Math. J., 64:1 (1991), 195–200 | DOI | MR | Zbl

[179] E. Fabes, N. Garofalo, S. Marín-Malave, S. Salsa, “Fatou theorems for some nonlinear elliptic equations”, Rev. Mat. Iberoamericana, 4:2 (1988), 227–251 | DOI | MR | Zbl

[180] P. Bauman, “Positive solutions of elliptic equations in nondivergence form and their adjoints”, Ark. Mat., 22:2 (1984), 153–173 | DOI | MR | Zbl

[181] H. Aikawa, “Equivalence between the boundary Harnack principle and the Carleson estimate”, Math. Scand., 103:1 (2008), 61–76 | DOI | MR | Zbl

[182] R. F. Bass, K. Burdzy, “The boundary {H}arnack principle for non-divergence form elliptic operators”, J. London Math. Soc. (2), 50:1 (1994), 157–169 | DOI | MR | Zbl

[183] H. Kim, M. Safonov, “The boundary Harnack principle for second order elliptic equations in John and uniform domains”, Proceedings of the St. Petersburg Mathematical Society, Workshop dedicated to the 90th anniversary of the O. A. Ladyzhenskaya birthday (Stockholm, 2012), v. XV, Amer. Math. Soc. Transl. Ser. 2, 232, Advances in mathematical analysis of partial differential equations, Amer. Math. Soc., Providence, RI, 2014, 153–176 | DOI | MR | Zbl

[184] D. De Silva, O. Savin, “A short proof of boundary Harnack principle”, J. Differential Equations, 269:3 (2020), 2419–2429 | DOI | MR | Zbl

[185] D. De Silva, O. Savin, “On the boundary Harnack principle in Hölder domains”, Math. Eng., 4:1 (2022), 004, 12 pp. | DOI | MR

[186] M. Allen, H. Shahgholian, “A new boundary Harnack principle (equations with right hand side)”, Arch. Ration. Mech. Anal., 234:3 (2019), 1413–1444 | DOI | MR | Zbl

[187] G. Sweers, “Hopf's lemma and two dimensional domains with corners”, Rend. Istit. Mat. Univ. Trieste, 28, suppl. (1996), 383–419 | MR | Zbl

[188] B. Sirakov, Global integrability and boundary estimates for uniformly elliptic PDE in divergence form, 2020 (v1 – 2019), 26 pp., arXiv: 1901.07464

[189] M. T. Barlow, M. Murugan, “Boundary Harnack principle and elliptic Harnack inequality”, J. Math. Soc. Japan, 71:2 (2019), 383–412 | DOI | MR | Zbl

[190] A. Ancona, “Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique”, Comm. Partial Differential Equations, 4:4 (1979), 321–337 | DOI | MR | Zbl

[191] H. Brezis, A. C. Ponce, “Remarks on the strong maximum principle”, Differential Integral Equations, 16:1 (2003), 1–12 | MR | Zbl

[192] M. Bertsch, F. Smarrazzo, A. Tesei, “A note on the strong maximum principle”, J. Differential Equations, 259:8 (2015), 4356–4375 | DOI | MR | Zbl

[193] A. C. Ponce, N. Wilmet, “The Hopf lemma for the Schrödinger operator”, Adv. Nonlinear Stud., 20:2 (2020), 459–475 | DOI | MR | Zbl

[194] H. Berestycki, L. Nirenberg, S. R. S. Varadhan, “The principal eigenvalue and maximum principle for second-order elliptic operators in general domains”, Comm. Pure Appl. Math., 47:1 (1994), 47–92 | DOI | MR | Zbl

[195] J. Barta, “Sur la vibration fondamentale d'une membrane”, C. R. Acad. Sci. Paris, 204 (1937), 472–473 | Zbl

[196] E. Battaglia, S. Biagi, A. Bonfiglioli, “The strong maximum principle and the Harnack inequality for a class of hypoelliptic non-Hörmander operators”, Ann. Inst. Fourier (Grenoble), 66:2 (2016), 589–631 | DOI | MR | Zbl

[197] V. Martino, G. Tralli, “On the Hopf–Oleinik lemma for degenerate-elliptic equations at characteristic points”, Calc. Var. Partial Differential Equations, 55:5 (2016), 115, 20 pp. | DOI | MR | Zbl

[198] S. N. Oshchepkova, O. M. Penkin, D. Savasteev, “Strong maximum principle for an elliptic operator on a stratified set”, Math. Notes, 92:2 (2012), 249–259 | DOI | DOI | MR | Zbl

[199] S. N. Oshchepkova, O. M. Penkin, D. Savasteev, “The normal derivative lemma for the Laplacian on a polyhedral set”, Math. Notes, 96:1 (2014), 122–129 | DOI | DOI | MR | Zbl

[200] N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20:4 (1967), 721–747 | DOI | MR | Zbl

[201] N. S. Trudinger, “Harnack inequalities for nonuniformly elliptic divergence structure equations”, Invent. Math., 64:3 (1981), 517–531 | DOI | MR | Zbl

[202] M. A. Dow, R. Výborný, “Maximum principles for some quasilinear second order partial differential equations”, Rend. Sem. Mat. Univ. Padova, 47 (1972), 331–351 | MR | Zbl

[203] P. Tolksdorf, “On the Dirichlet problem for quasilinear equations in domains with conical boundary points”, Comm. Partial Differential Equations, 8:7 (1983), 773–817 | DOI | MR | Zbl

[204] D. Castorina, G. Riey, B. Sciunzi, “Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations”, Calc. Var. Partial Differential Equations, 58:3 (2019), 95, 18 pp. | DOI | MR | Zbl

[205] A. Cellina, “On the strong maximum principle”, Proc. Amer. Math. Soc., 130:2 (2002), 413–418 | DOI | MR | Zbl

[206] S. Bertone, A. Cellina, E. M. Marchini, “On Hopf's lemma and the strong maximum principle”, Comm. Partial Differential Equations, 31:4-6 (2006), 701–733 | DOI | MR | Zbl

[207] J. L. Vázquez, “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. Optim., 12:3 (1984), 191–202 | DOI | MR | Zbl

[208] P. Pucci, J. Serrin, “A note on the strong maximum principle for elliptic differential inequalities”, J. Math. Pures Appl. (9), 79:1 (2000), 57–71 | DOI | MR | Zbl

[209] P. L. Felmer, A. Quaas, “On the strong maximum principle for quasilinear elliptic equations and systems”, Adv. Differential Equations, 7:1 (2002), 25–46 | MR | Zbl

[210] V. Julin, “Generalized {H}arnack inequality for semilinear elliptic equations”, J. Math. Pures Appl. (9), 106:5 (2016), 877–904 | DOI | MR | Zbl

[211] M.-F. Bidaut-Véron, R. Borghol, L. Véron, “Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations”, Calc. Var. Partial Differential Equations, 27:2 (2006), 159–177 | DOI | MR | Zbl

[212] K. Nyström, “$p$-harmonic functions in the {H}eisenberg group: boundary behaviour in domains well-approximated by non-characteristic hyperplanes”, Math. Ann., 357:1 (2013), 307–353 | DOI | MR | Zbl

[213] B. Sirakov, “Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE”, Int. Math. Res. Not. IMRN, 2018:24 (2018), 7457–7482 | DOI | MR | Zbl

[214] Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition”, Differ. Equ., 33:12 (1997), 1653–1663 | MR | Zbl

[215] Yu. A. Alkhutov, M. D. Surnachev, “Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$”, J. Math. Sci. (N. Y.), 244:2 (2020), 116–147 | DOI | MR | Zbl

[216] I. I. Skrypnik, M. V. Voitovych, “$\mathcal{B}_1$ classes of De Giorgi–Ladyzhenskaya–Ural'tseva and their applications to elliptic and parabolic equations with generalized Orlicz growth conditions”, Nonlinear Anal., 202 (2021), 112135, 30 pp. | DOI | MR | Zbl

[217] T. Adamowicz, N. L. P. Lundström, “The boundary Harnack inequality for variable exponent $p$-Laplacian, Carleson estimates, barrier functions and $p(\,\cdot\,)$-harmonic measures”, Ann. Mat. Pura Appl. (4), 195:2 (2016), 623–658 | DOI | MR | Zbl

[218] M. Riesz, “Intégrales de Riemann–Liouville et potentiels”, Acta Litt. Sci. Szeged, 9 (1938), 1–42 | Zbl

[219] R. Musina, A. I. Nazarov, “On fractional Laplacians”, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790 | DOI | MR | Zbl

[220] R. Musina, A. I. Nazarov, “On fractional Laplacians – 2”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33:6 (2016), 1667–1673 | DOI | MR | Zbl

[221] L. Silvestre, “Regularity of the obstacle problem for a fractional power of the Laplace operator”, Comm. Pure Appl. Math., 60:1 (2007), 67–112 | DOI | MR | Zbl

[222] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, “Regularity of radial extremal solutions for some non-local semilinear equations”, Comm. Partial Differential Equations, 36:8 (2011), 1353–1384 | DOI | MR | Zbl

[223] A. Iannizzotto, S. Mosconi, M. Squassina, “$H^s$ versus $C^0$-weighted minimizers”, NoDEA Nonlinear Differential Equations Appl., 22:3 (2015), 477–497 | DOI | MR | Zbl

[224] R. Musina, A. I. Nazarov, “Strong maximum principles for fractional Laplacians”, Proc. Roy. Soc. Edinburgh Sect. A, 149:5 (2019), 1223–1240 | DOI | MR | Zbl

[225] N. Abatangelo, S. Jarohs, A. Saldaña, “On the loss of maximum principles for higher-order fractional Laplacians”, Proc. Amer. Math. Soc., 146:11 (2018), 4823–4835 | DOI | MR | Zbl

[226] K. Bogdan, “The boundary Harnack principle for the fractional Laplacian”, Studia Math., 123:1 (1997), 43–80 | DOI | MR | Zbl

[227] X. Ros-Oton, J. Serra, “The boundary Harnack principle for nonlocal elliptic operators in non-divergence form”, Potential Anal., 51:3 (2019), 315–331 | DOI | MR | Zbl

[228] X. Ros-Oton, J. Serra, “The Dirichlet problem for the fractional Laplacian: regularity up to the boundary”, J. Math. Pures Appl. (9), 101:3 (2014), 275–302 | DOI | MR | Zbl

[229] X. Ros-Oton, “Boundary regularity, {P}ohozaev identities and nonexistence results”, Recent developments in nonlocal theory, De Gruyter, Berlin, 2018, 335–358 | DOI | MR | Zbl

[230] L. M. Del Pezzo, A. Quaas, “A Hopf's lemma and a strong minimum principle for the fractional $p$-Laplacian”, J. Differential Equations, 263:1 (2017), 765–778 | DOI | MR | Zbl

[231] Panki Kim, Renming Song, Z. Vondraček, “Potential theory of subordinate killed Brownian motion”, Trans. Amer. Math. Soc., 371:6 (2019), 3917–3969 | DOI | MR | Zbl

[232] N. Abatangelo, M. M. Fall, R. Y. Temgoua, A Hopf lemma for the regional fractional Laplacian, 2021, 16 pp., arXiv: 2112.09522

[233] N. Guillen, R. W. Schwab, “Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations”, Arch. Ration. Mech. Anal., 206:1 (2012), 111–157 | DOI | MR | Zbl

[234] M. M. Fall, S. Jarohs, “Overdetermined problems with fractional Laplacian”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 924–938 | DOI | MR | Zbl