@article{RM_2022_77_1_a6,
author = {A. I. Garber and A. N. Magazinov},
title = {On {Voronoi's} conjecture for four- and five-dimensional parallelohedra},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {174--176},
year = {2022},
volume = {77},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a6/}
}
TY - JOUR AU - A. I. Garber AU - A. N. Magazinov TI - On Voronoi's conjecture for four- and five-dimensional parallelohedra JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 174 EP - 176 VL - 77 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_1_a6/ LA - en ID - RM_2022_77_1_a6 ER -
A. I. Garber; A. N. Magazinov. On Voronoi's conjecture for four- and five-dimensional parallelohedra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 174-176. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a6/
[1] G. Voronoi, J. Reine Angew. Math., 1908:133 (1908), 97–178 ; 1908:134 (1908), 198–287 ; 1909:136 (1909), 67–178 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[2] B. Delaunay, Izv. AN SSSR. Ser. VII. Otd. fiz.-matem. nauk, 1929, no. 1, 79–110 ; No 2, 147–164 | Zbl
[3] A. Garber, A. Magazinov, Voronoi conjecture for five-dimensional parallelohedra, 2020 (v1 – 2019), 34 pp., arXiv: 1906.05193
[4] J. E. Goodman, J. O'Rourke, C. D. Tóth (eds.), Handbook of discrete and computational geometry, Discrete Math. Appl. (Boca Raton), 3rd ed., CRC Press, Boca Raton, FL, 2017, xxi+1927 pp. | DOI | MR | Zbl
[5] N. P. Dolbilin, Tr. MMO, 73, no. 2, MTsNMO, M., 2012, 259–276 | DOI | MR | Zbl
[6] H. Minkowski, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1897 (1897), 198–219 | Zbl
[7] B. A. Venkov, Vestn. Leningrad. un-ta. Ser. matem., fiz., khim., 9:2 (1954), 11–31 | MR
[8] P. McMullen, Mathematika, 27:1 (1980), 113–121 | DOI | MR | Zbl
[9] O. K. Zitomirskij, Zhurn. Len. fiz.-matem. obsch., 2:2 (1929), 131–151 | Zbl
[10] M. Dutour Sikirić, V. Grishukhin, A. Magazinov, European J. Combin., 42 (2014), 49–73 | DOI | MR | Zbl
[11] A. Garber, Ann. Comb., 21:4 (2017), 551–572 | DOI | MR | Zbl
[12] A. Ordine, Proof of the Voronoi conjecture on parallelotopes in a new special case, Thesis (Ph.D.), Queen's Univ., Canada, 2005, 131 pp. | MR