@article{RM_2022_77_1_a3,
author = {Yu. L. Sachkov},
title = {Left-invariant optimal control problems on {Lie} groups: classification and problems integrable by elementary functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {99--163},
year = {2022},
volume = {77},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a3/}
}
TY - JOUR AU - Yu. L. Sachkov TI - Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 99 EP - 163 VL - 77 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_1_a3/ LA - en ID - RM_2022_77_1_a3 ER -
%0 Journal Article %A Yu. L. Sachkov %T Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 99-163 %V 77 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2022_77_1_a3/ %G en %F RM_2022_77_1_a3
Yu. L. Sachkov. Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 99-163. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a3/
[1] A. A. Agrachev, “Methods of control theory in nonholonomic geometry”, Proceedings of the international congress of mathematicians, v. 2, Birkhäuser, Basel, 1995, 1473–1483 | DOI | MR | Zbl
[2] A. A. Agrachev, “Geometry of optimal control problems and Hamiltonian systems”, Nonlinear and optimal control theory, Lecture Notes in Math., 1932, Springer, Berlin, 2008, 1–59 | DOI | MR | Zbl
[3] A. A. Agrachev, “Topics in sub-Riemannian geometry”, Russian Math. Surveys, 71:6 (2016), 989–1019 | DOI | DOI | MR | Zbl
[4] A. Agrachev, D. Barilari, “Sub-Riemannian structures on 3D Lie groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44 | DOI | MR | Zbl
[5] A. Agrachev, D. Barilari, U. Boscain, “On the Hausdorff volume in sub-Riemannian geometry”, Calc. Var. Partial Differential Equations, 43:3-4 (2012), 355–388 | DOI | MR | Zbl
[6] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019, xviii+745 pp. | DOI | MR | Zbl
[7] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl
[8] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl
[9] D. M. Almeida, “Sub-Riemannian symmetric spaces of Engel type”, Mat. Contemp., 17 (1999), 45–57 | MR | Zbl
[10] D. M. Almeida, “Sub-Riemannian homogeneous spaces of Engel type”, J. Dyn. Control Syst., 20:2 (2014), 149–166 | DOI | MR | Zbl
[11] A. A. Ardentov, I. S. Gubanov, “Modelirovanie parkovki avtomobilya s pritsepom vdol putei Markova–Dubinsa i Ridsa–Sheppa”, Programmnye sistemy: teoriya i prilozheniya, 10:4 (2019), 97–110 | DOI
[12] A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl
[13] D. Barilari, U. Boscain, J.-P. Gauthier, “On 2-step, corank 2 nilpotent sub-Riemannian metrics”, SIAM J. Control Optim., 50:1 (2012), 559–582 | DOI | MR | Zbl
[14] L. Bates, F. Fassò, “The conjugate locus for the Euler top. I. The axisymmetric case”, Int. Math. Forum, 2:41-44 (2007), 2109–2139 | DOI | MR | Zbl
[15] A. Bellaïche, J.-J. Risler (eds.), Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser Verlag, Basel, 1996, viii+393 pp. | DOI | MR | Zbl
[16] V. N. Berestovskiĭ, “Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric”, Siberian Math. J., 55:5 (2014), 783–791 | DOI | MR | Zbl
[17] V. N. Berestovskiĭ, “(Locally) shortest arcs of a special sub-Riemannian metric on the Lie group $SO_0(2,1)$”, St. Petersburg Math. J., 27:1 (2016), 1–14 | DOI | MR | Zbl
[18] V. N. Berestovskiĭ, I. A. Zubareva, “Sub-Riemannian distance in the Lie groups $\operatorname{SU}(2)$ and $\operatorname{SO}(3)$”, Siberian Adv. Math., 26:2 (2016), 77–89 | DOI | DOI | MR | Zbl
[19] V. N. Berestovskiĭ, I. A. Zubareva, “Shapes of spheres of special nonholonomic left-invariant intrinsic metrics on some Lie groups”, Siberian Math. J., 42:4 (2001), 613–628 | DOI | MR | Zbl
[20] V. N. Berestovskiĭ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SO(3)$”, Siberian Math. J., 56:4 (2015), 601–611 | DOI | DOI | MR | Zbl
[21] V. N. Berestovskiĭ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SL(2)$”, Siberian Math. J., 57:3 (2016), 411–424 | DOI | DOI | MR | Zbl
[22] V. N. Berestovskii, I. A. Zubareva, “Locally isometric coverings of the Lie group $\operatorname{SO}_0(2,1)$ with special sub-Riemannian metric”, Sb. Math., 207:9 (2016), 1215–1235 | DOI | DOI | MR | Zbl
[23] V. N. Berestovskiĭ, I. A. Zubareva, “Sub-Riemannian distance on the Lie group $\operatorname{SO}_0(2,1)$”, St. Petersburg Math. J., 28:4 (2017), 477–489 | DOI | MR | Zbl
[24] V. N. Berestovskiĭ, I. A. Zubareva, “Sub-Riemannian distance on the Lie group $\operatorname{SL}(2)$”, Siberian Math. J., 58:1 (2017), 16–27 | DOI | DOI | MR | Zbl
[25] I. Yu. Beschatnyi, “The optimal rolling of a sphere, with twisting but without slipping”, Sb. Math., 205:2 (2014), 157–191 | DOI | DOI | MR | Zbl
[26] I. Beschastnyi, A. Medvedev, “Left-invariant sub-Riemannian Engel structures: abnormal geodesics and integrability”, SIAM J. Control Optim., 2018:56, 3524–3537 | DOI | MR | Zbl
[27] J.-D. Boissonat, A. Cerezo, J. Leblond, “Shortest paths of bounded curvature in the plane”, Proceedings 1992 IEEE international conference on robotics and automation (Nice, 1992), v. 3, IEEE, 1992, 2315–2320 | DOI
[28] U. Boscain, T. Chambrion, J.-P. Gauthier, “On the $K+P$ problem for a three-level quantum system: optimality implies resonance”, J. Dyn. Control Syst., 8:4 (2002), 547–572 | DOI | MR | Zbl
[29] U. Boscain, F. Rossi, “Invariant Carnot–Caratheodory metrics on $S^3$, $\operatorname{SO}(3)$, $\operatorname{SL}(2)$ and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[30] R. W. Brockett, “Lie theory and control systems defined on spheres”, SIAM J. Appl. Math., 25:2 (1973), 213–225 | DOI | MR | Zbl
[31] R. W. Brockett, “Control theory and singular Riemannian geometry”, New directions in applied mathematics (Cleveland, OH, 1980), Springer, New York–Berlin, 1982, 11–27 | DOI | MR | Zbl
[32] R. W. Brockett, “Explicitly solvable control problems with nonholonomic constraints”, Proceedings of the 38th IEEE conference on decision and control, v. 1, IEEE, 1999, 13–16 | DOI
[33] R. W. Brockett, R. S. Millman, H. J. Sussmann (eds.), Differential geometric control theory (Houghton, MI, 1982), Progr. Math., 27, Birkhäuser, Boston, MA, 1983, vii+340 pp. | MR | Zbl
[34] Y. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195 | DOI | MR | Zbl
[35] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progr. Math., 259, Birkhäuser Verlag, Basel, 2007, xvi+223 pp. | DOI | MR | Zbl
[36] Der-Chen Chang, I. Markina, A. Vasil'ev, “Sub-Riemannian geodesics on the 3-D sphere”, Complex Anal. Oper. Theory, 3:2 (2009), 361–377 | DOI | MR | Zbl
[37] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[38] E. Falbel, C. Gorodski, “Sub-Riemannian homogeneous spaces in dimensions 3 and 4”, Geom. Dedicata, 62:3 (1996), 227–252 | DOI | MR | Zbl
[39] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. 2. Matem. Mekh. Astr. Fiz. Khim., 1959, no. 2, 25–32 | MR | Zbl
[40] B. Gaveau, “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents”, Acta Math., 139:1-2 (1977), 95–153 | DOI | MR | Zbl
[41] V. Ya. Gershkovich, “Variatsionnaya zadacha s negolonomnoi svyazyu na $\operatorname{SO}(3)$”, Geometriya i topologiya v globalnykh nelineinykh zadachakh, Novoe v globalnom analize, Izd-vo Voronezh. gos. un-ta, Voronezh, 1984, 149–152 | MR | Zbl
[42] J. Hadamard, “Les surfaces à courbures opposées et leurs lignes géodésiques”, J. Math. Pures Appl. (5), 4 (1898), 27–73 | Zbl
[43] A. Isidori, Nonlinear control systems: an introduction, Lect. Notes Control Inf. Sci., 72, Springer-Verlag, Berlin, 1985, vi+297 pp. | DOI | MR | Zbl
[44] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl
[45] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997, xviii+492 pp. | DOI | MR | Zbl
[46] V. Jurdjevic, “Optimal control, geometry, and mechanics”, Mathematical control theory, Springer, New York, 1999, 227–267 | DOI | MR | Zbl
[47] V. Jurdjevic, “Hamiltonian point of view of non-Euclidean geometry and elliptic functions”, Systems Control Lett., 43:1 (2001), 25–41 | DOI | MR | Zbl
[48] V. Jurdjevic, Optimal control and geometry: integrable systems, Cambridge Stud. Adv. Math., 154, Cambridge Univ. Press, Cambridge, 2016, xx+415 pp. | MR | Zbl
[49] S. G. Krantz, H. R. Parks, The implicit function theorem. History, theory, and applications, Birkhäuser Boston, Inc., Boston, MA, 2002, xii+163 pp. | DOI | MR | Zbl
[50] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 1, Mechanik, 14., korr. Aufl., H. Deutsch., Frankfurt am Main, 1997, 231 pp. | MR | Zbl | Zbl
[51] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu, D. Vittone, “Sard property for the endpoint map on some Carnot groups”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33:6 (2016), 1639–1666 | DOI | MR | Zbl
[52] Wensheng Liu, H. J. Sussman, Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc., 118, No 564, Amer. Math. Soc., Providence, RI, 1995, x+104 pp. | DOI | MR | Zbl
[53] A. A. Markov, “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 1:2 (1889), 250–276 | Zbl
[54] F. Monroy-Pérez, A. Anzaldo-Meneses, “Optimal control on the Heisenberg group”, J. Dyn. Control Syst., 5:4 (1999), 473–499 | DOI | MR | Zbl
[55] F. Monroy-Pérez, A. Anzaldo-Meneses, “The step-2 nilpotent $(n,n(n+1)/2)$ sub-Riemannian geometry”, J. Dyn. Control Syst., 12:2 (2006), 185–216 | DOI | MR | Zbl
[56] A. Montanari, D. Morbidelli, “On the subRiemannian cut locus in a model of free two-step Carnot group”, Calc. Var. Partial Differential Equations, 56:2 (2017), 36, 26 pp. | DOI | MR | Zbl
[57] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | DOI | MR | Zbl
[58] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dyn. Control Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl
[59] O. Myasnichenko, “Nilpotent $(n,n(n+1)/2)$ sub-Riemannian problem”, J. Dyn. Control Syst., 12:1 (2006), 87–95 | DOI | MR | Zbl
[60] H. Nijmeijer, A. van der Schaft, Nonlinear dynamical control systems, Springer-Verlag, New York, 1990, ix+467 pp. | DOI | MR | Zbl
[61] T. Pecsvaradi, “Optimal horizontal guidance law for aircraft in the terminal area”, IEEE Trans. Automatic Control, AC-17:6 (1972), 763–772 | DOI | MR
[62] A. V. Podobryaev, “Diameter of the Berger sphere”, Math. Notes, 103:5 (2018), 846–851 | DOI | DOI | MR | Zbl
[63] A. V. Podobryaev, Yu. L. Sachkov, “Cut locus of a left invariant Riemannian metric on $\operatorname{SO}_3$ in the axisymmetric case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl
[64] A. V. Podobryaev, Yu. L. Sachkov, “Left-invariant Riemannian problems on the groups of proper motions of hyperbolic plane and sphere”, Dokl. Math., 95:2 (2017), 176–177 | DOI | DOI | MR | Zbl
[65] A. V. Podobryaev, Yu. L. Sachkov, “Symmetric Riemannian problem on the group of proper isometries of hyperbolic plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl
[66] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, A Pergamon Press Book, The Macmillan Co., New York, 1964, vii+338 pp. | MR | MR | Zbl | Zbl
[67] J. A. Reeds, L. A. Shepp, “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR
[68] L. Rifford, Sub-Riemannian geometry and optimal transport, SpringerBriefs Math., Springer, Cham, 2014, viii+140 pp. | DOI | MR | Zbl
[69] L. Rizzi, U. Serres, “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR | Zbl
[70] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl
[71] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | DOI | MR | Zbl
[72] Yu. L. Sachkov, Upravlyaemost i simmetrii invariantnykh sistem na gruppakh Li i odnorodnykh prostranstvakh, Fizmatlit, M., 2007, 224 pp. | Zbl
[73] Yu. L. Sachkov, “Control theory on Lie groups”, J. Math. Sci. (N. Y.), 156:3 (2009), 381–439 | DOI | MR | Zbl
[74] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl
[75] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl
[76] Yu. L. Sachkov, Introduction to geometric control, Springer, 2022, (to appear)
[77] Yu. L. Sachkov, “Conjugate time in the sub-Riemannian problem on the Cartan group”, J. Dyn. Control Syst., 27:4 (2021), 709–751 | DOI | MR | Zbl
[78] Yu. L. Sachkov, “Levoinvariantnye zadachi optimalnogo upravleniya na gruppakh Li, integriruemye v ellipticheskikh funktsiyakh” (to appear)
[79] Yu. L. Sachkov, E. F. Sachkova, “Exponential mapping in Euler's elastic problem”, J. Dyn. Control Syst., 20:4 (2014), 443–464 | DOI | MR | Zbl
[80] T. Sakai, “Cut loci of Berger's spheres”, Hokkaido Math. J., 10:1 (1981), 143–155 | DOI | MR | Zbl
[81] E. D. Sontag, Mathematical control theory. Deterministic finite dimensional systems, Texts Appl. Math., 6, Springer-Verlag, New York, 1990, xiv+396 pp. | DOI | MR | Zbl
[82] P. Souères, Commande optimale et robots mobiles non holonomes, Ph.D. thesis, Univ. Paul Sabatier, Toulouse, 1993, 141 pp.
[83] P. Souères, J.-P. Laumond, “Shortest paths synthesis for a car-like robot”, IEEE Trans. Automat. Control, 41:5 (1996), 672–688 | DOI | MR | Zbl
[84] H. J. Sussmann, Guoqing Tang, Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Tech. rep. SYCON-91-10, Rutgers Univ., New Brunswick, NJ, 1991, 72 pp.
[85] V. M. Tikhomirov, Stories about maxima and minima, Math. World, 1, Amer. Math. Soc., Providence, RI; Math. Assoc. Amer., Washington, DC, 1990, xi+187 pp. | MR | Zbl
[86] A. M. Vershik, V. Ya. Gershkovich, “Geodesic flows on $\operatorname{SL}(2,\mathbb R)$ with nonholonomic restrictions”, J. Soviet Math., 41:2 (1988), 891–898 | DOI | Zbl
[87] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic problems and the theory of distributions”, Acta Appl. Math., 12:2 (1988), 181–209 | DOI | MR | MR | Zbl
[88] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | DOI | MR | MR | Zbl
[89] A. M. Vershik, V. Ya. Gershkovich, “The geometry of the nonholonomic sphere for three-dimensional Lie group”, Global analysis – studies and applications III, Lecture Notes in Math., 1334, Springer, Berlin, 1988, 309–331 | DOI | MR | MR | Zbl | Zbl
[90] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, IL–London, 1971, viii+270 pp. | MR | MR | Zbl | Zbl
[91] M. I. Zelikin, Optimalnoe upravlenie i variatsionnoe ischislenie, 4-e izd., ispr., URSS, M., 2017, 160 pp.