Mots-clés : trace formulae
@article{RM_2022_77_1_a2,
author = {D. A. Popov},
title = {Spectrum of the {Laplace} operator on closed surfaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {81--97},
year = {2022},
volume = {77},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a2/}
}
D. A. Popov. Spectrum of the Laplace operator on closed surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a2/
[1] G. V. Rozenblyum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations VII, Encyclopaedia Math. Sci., 64, Springer, Berlin, 1994, 1–261 | MR | Zbl
[2] M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, Berlin–New York, 1971, vii+251 pp. | DOI | MR | Zbl
[3] L. Hörmander, The analysis of linear partial differential operators, v. IV, Grundlehren Math. Wiss., 275, Fourier integral operators, Springer-Verlag, Berlin, 1985, vii+352 pp. | MR | MR | Zbl
[4] Ya. G. Sinai, A. I. Shafarevich (red.), Kvantovyi khaos, Sb. ct., RKhD, M.–Izhevsk, 2008, 384 pp.
[5] H.-J. Stöckmann, Quantum chaos. An introduction, Cambridge Univ. Press, Cambridge, 1999, x+368 pp. | DOI | MR | Zbl
[6] P. Sarnak, “Arithmetic quantum chaos”, The Shur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat-Gan, 1995, 183–236 | MR | Zbl
[7] D. Jakobson, N. Nadirashvili, J. Toth, “Geometric properties of eigenfunctions”, Russian Math. Surveys, 56:6 (2001), 1085–1105 | DOI | DOI | MR | Zbl
[8] A. V. Penskoi, “Extremal metrics for eigenvalues of the Laplace–Beltrami operator on surfaces”, Russian Math. Surveys, 68:6 (2013), 1073–1130 | DOI | DOI | MR | Zbl
[9] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl
[10] L. Hörmander, “The spectral function on an elliptic operator”, Acta Math., 121 (1968), 193–218 | DOI | MR | Zbl
[11] J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29 (1975), 39–79 | DOI | MR | Zbl
[12] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | DOI | MR | MR | Zbl
[13] T. E. Gureev, Yu. G. Safarov, “Exact spectral asymptotics for the Laplace operator on a manifold with periodic geodesics”, Proc. Steklov Inst. Math., 179 (1989), 35–53 | MR | Zbl
[14] A. V. Volovoy, “Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold”, Comm. Partial Differential Equations, 15:11 (1990), 1509–1563 | DOI | MR | Zbl
[15] P. H. Bérard, “On the wave equation on a compact Riemannian manifold without conjugate points”, Math. Z., 155:3 (1977), 249–276 | DOI | MR | Zbl
[16] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., pererab., Nauka, M., 1986, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 СЃ. ; Part II. The geometry and topology of manifolds, 104, 1985, xv+430 pp. ; Part III. Introduction to homology theory, 124, 1990, x+416 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[17] A. V. Bolsinov, A. T. Fomenko, Geometriya i topologiya integriruemykh geodezicheskikh potokov na poverkhnostyakh, Biblioteka “Regulyarnaya i khaoticheskaya dinamika”, Editorial URSS, M., 1999, 328 pp.
[18] Y. Colin de Verdière, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable”, Math. Z., 171:1 (1980), 51–73 | DOI | MR | Zbl
[19] P. M. Bleher, “Distribution of energy levels of a quantum free particle on a surface of revolution”, Duke. Math. J., 74:1 (1994), 45–93 | DOI | MR | Zbl
[20] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statistical properties of the spectra of Laplace–Beltrami operators on Liouville surfaces”, Russian Math. Surveys, 48:4 (1993), 1–142 | DOI | MR | Zbl
[21] P. M. Bleher, D. V. Kosygin, Ya. G. Sinai, “Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae”, Comm. Math. Phys., 170:2 (1995), 375–403 | DOI | MR | Zbl
[22] H. Lapointe, “A remainder estimate for Weyl's law on Liouville tori”, Spectrum and dynamics, CRM Proc. Lecture Notes, 52, Amer. Math. Soc., Providence, RI, 2010, 89–112 | DOI | MR | Zbl
[23] D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. Math., 75:5 (2011), 1007–1045 | DOI | DOI | MR | Zbl
[24] A. Ya. Khinchin, Continued fractions, The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | MR | Zbl | Zbl
[25] D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Russian Math. Surveys, 74:5 (2019), 909–925 | DOI | DOI | MR | Zbl
[26] V. I. Arnold, A. Avez, Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, 9, Gauthier-Villars, Paris, 1967, ii+243 pp. | MR | Zbl | Zbl
[27] W. P. Thurston, Three-dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997, x+311 pp. | MR | Zbl
[28] B. Randol, “The Riemann hypothesis for Selberg's zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator”, Trans. Amer. Math. Soc., 236 (1978), 209–223 | DOI | MR | Zbl
[29] B. Randol, “A Dirichlet series of eigenvalue type with applications to asymptotic estimates”, Bull. London Math. Soc., 13:4 (1981), 309–315 | DOI | MR | Zbl
[30] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976, vi+516 pp. | DOI | MR | Zbl
[31] S. Katok, Fuchsian groups, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1992, x+175 pp. | MR | Zbl
[32] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, 11, Kanô Memorial Lectures, 1, Iwanami Shoten, Publishers, Tokyo; Princeton Univ. Press, Princeton, NJ, 1971, xiv+267 pp. | MR | MR | Zbl | Zbl
[33] D. Jakobson, I. Polterovich, J. A. Toth, “A lower bound for the remainder in Weyl's law on negatively curved surfaces”, Int. Math. Res. Not. IMRN, 2008:2 (2008), rnm142, 38 pp. ; (2007 (v1 – 2006)), 27 pp., arXiv: math/0612250 | DOI | MR | Zbl
[34] N. I. Akhieser, I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbucher und Monogr., IV, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | MR | Zbl | Zbl
[35] H. P. McKean, Jr., I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Differential Geometry, 1:1 (1967), 43–69 | DOI | MR | Zbl
[36] A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153 | DOI | MR | Zbl
[37] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta-function”, Duke Math. J., 43:3 (1976), 441–482 | DOI | MR | Zbl
[38] D. A. Popov, “On the Selberg trace formula for strictly hyperbolic groups”, Funct. Anal. Appl., 47:4 (2013), 290–301 | DOI | DOI | MR | Zbl
[39] Y. Colin de Verdière, “Spectre du laplacien et longueurs des géodésiques périodiques. I”, Compositio Math., 27 (1973), 83–106 | MR | Zbl
[40] J. Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math., 24 (1974), 65–82 | DOI | MR | Zbl
[41] H. Donnelly, “On the wave equation asymptotics of a compact negatively curved surface”, Invent. Math., 45:2 (1978), 115–137 | DOI | MR | Zbl
[42] D. A. Popov, “Explicit formula for the spectral counting function of the Laplace operator on a compact Riemannian surface of genus $g>1$”, Funct. Anal. Appl., 46:2 (2012), 133–146 | DOI | DOI | MR | Zbl
[43] D. A. Popov, “On the Weyl formula for the Laplace operator on hyperbolic Riemann surfaces”, Funct. Anal. Appl., 48:2 (2014), 150–153 | DOI | DOI | MR | Zbl
[44] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl
[45] A. S. Besicovitch, Almost periodic functions, Dover Publications, Inc., New York, 1955, xiii+180 pp. | MR | Zbl
[46] P. M. Bleher, Zheming Chang, F. J. Dyson, J. L. Lebowitz, “Distribution of the error term for the number of lattice points inside a shifted circle”, Comm. Math. Phys., 154:3 (1993), 433–469 | DOI | MR | Zbl
[47] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415 | DOI | MR | Zbl
[48] Yuk-Kam Lau, “On the existence of limiting distributions of some number-theoretic error terms”, J. Number Theory, 94:2 (2002), 359–374 | DOI | MR | Zbl
[49] A. Bäcker, F. Steiner, “Quantum chaos and quantum ergodicity”, Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, 2001, 717–751 | DOI | MR | Zbl
[50] M. L. Mehta, Random matrices, Pure Appl. Math. (Amst.), 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004, xviii+688 pp. | MR | Zbl
[51] W. Luo, P. Sarnak, “Number variance for arithmetic hyperbolic surfaces”, Comm. Math. Phys., 161:2 (1994), 419–432 | DOI | MR | Zbl