Spectrum of the Laplace operator on closed surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 81-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey is given of classical and relatively recent results on the distribution of the eigenvalues of the Laplace operator on closed surfaces. For various classes of metrics the dependence of the behaviour of the second term in Weyl's formula on the geometry of the geodesic flow is considered. Various versions of trace formulae are presented, along with ensuing identities for the spectrum. The case of a compact Riemann surface with the Poincaré metric is considered separately, with the use of Selberg's formula. A number of results on the stochastic properties of the spectrum in connection with the theory of quantum chaos and the universality conjecture are presented. Bibliography: 51 titles.
Keywords: spectrum, Laplace operator, Weyl's formula, geodesic flow, quantum chaos, universality conjecture.
Mots-clés : trace formulae
@article{RM_2022_77_1_a2,
     author = {D. A. Popov},
     title = {Spectrum of the {Laplace} operator on closed surfaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {81--97},
     year = {2022},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a2/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Spectrum of the Laplace operator on closed surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 81
EP  - 97
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_1_a2/
LA  - en
ID  - RM_2022_77_1_a2
ER  - 
%0 Journal Article
%A D. A. Popov
%T Spectrum of the Laplace operator on closed surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 81-97
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2022_77_1_a2/
%G en
%F RM_2022_77_1_a2
D. A. Popov. Spectrum of the Laplace operator on closed surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a2/

[1] G. V. Rozenblyum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations VII, Encyclopaedia Math. Sci., 64, Springer, Berlin, 1994, 1–261 | MR | Zbl

[2] M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, Berlin–New York, 1971, vii+251 pp. | DOI | MR | Zbl

[3] L. Hörmander, The analysis of linear partial differential operators, v. IV, Grundlehren Math. Wiss., 275, Fourier integral operators, Springer-Verlag, Berlin, 1985, vii+352 pp. | MR | MR | Zbl

[4] Ya. G. Sinai, A. I. Shafarevich (red.), Kvantovyi khaos, Sb. ct., RKhD, M.–Izhevsk, 2008, 384 pp.

[5] H.-J. Stöckmann, Quantum chaos. An introduction, Cambridge Univ. Press, Cambridge, 1999, x+368 pp. | DOI | MR | Zbl

[6] P. Sarnak, “Arithmetic quantum chaos”, The Shur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat-Gan, 1995, 183–236 | MR | Zbl

[7] D. Jakobson, N. Nadirashvili, J. Toth, “Geometric properties of eigenfunctions”, Russian Math. Surveys, 56:6 (2001), 1085–1105 | DOI | DOI | MR | Zbl

[8] A. V. Penskoi, “Extremal metrics for eigenvalues of the Laplace–Beltrami operator on surfaces”, Russian Math. Surveys, 68:6 (2013), 1073–1130 | DOI | DOI | MR | Zbl

[9] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl

[10] L. Hörmander, “The spectral function on an elliptic operator”, Acta Math., 121 (1968), 193–218 | DOI | MR | Zbl

[11] J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29 (1975), 39–79 | DOI | MR | Zbl

[12] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | DOI | MR | MR | Zbl

[13] T. E. Gureev, Yu. G. Safarov, “Exact spectral asymptotics for the Laplace operator on a manifold with periodic geodesics”, Proc. Steklov Inst. Math., 179 (1989), 35–53 | MR | Zbl

[14] A. V. Volovoy, “Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold”, Comm. Partial Differential Equations, 15:11 (1990), 1509–1563 | DOI | MR | Zbl

[15] P. H. Bérard, “On the wave equation on a compact Riemannian manifold without conjugate points”, Math. Z., 155:3 (1977), 249–276 | DOI | MR | Zbl

[16] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., pererab., Nauka, M., 1986, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 СЃ. ; Part II. The geometry and topology of manifolds, 104, 1985, xv+430 pp. ; Part III. Introduction to homology theory, 124, 1990, x+416 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[17] A. V. Bolsinov, A. T. Fomenko, Geometriya i topologiya integriruemykh geodezicheskikh potokov na poverkhnostyakh, Biblioteka “Regulyarnaya i khaoticheskaya dinamika”, Editorial URSS, M., 1999, 328 pp.

[18] Y. Colin de Verdière, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable”, Math. Z., 171:1 (1980), 51–73 | DOI | MR | Zbl

[19] P. M. Bleher, “Distribution of energy levels of a quantum free particle on a surface of revolution”, Duke. Math. J., 74:1 (1994), 45–93 | DOI | MR | Zbl

[20] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statistical properties of the spectra of Laplace–Beltrami operators on Liouville surfaces”, Russian Math. Surveys, 48:4 (1993), 1–142 | DOI | MR | Zbl

[21] P. M. Bleher, D. V. Kosygin, Ya. G. Sinai, “Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae”, Comm. Math. Phys., 170:2 (1995), 375–403 | DOI | MR | Zbl

[22] H. Lapointe, “A remainder estimate for Weyl's law on Liouville tori”, Spectrum and dynamics, CRM Proc. Lecture Notes, 52, Amer. Math. Soc., Providence, RI, 2010, 89–112 | DOI | MR | Zbl

[23] D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. Math., 75:5 (2011), 1007–1045 | DOI | DOI | MR | Zbl

[24] A. Ya. Khinchin, Continued fractions, The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | MR | Zbl | Zbl

[25] D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Russian Math. Surveys, 74:5 (2019), 909–925 | DOI | DOI | MR | Zbl

[26] V. I. Arnold, A. Avez, Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, 9, Gauthier-Villars, Paris, 1967, ii+243 pp. | MR | Zbl | Zbl

[27] W. P. Thurston, Three-dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997, x+311 pp. | MR | Zbl

[28] B. Randol, “The Riemann hypothesis for Selberg's zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator”, Trans. Amer. Math. Soc., 236 (1978), 209–223 | DOI | MR | Zbl

[29] B. Randol, “A Dirichlet series of eigenvalue type with applications to asymptotic estimates”, Bull. London Math. Soc., 13:4 (1981), 309–315 | DOI | MR | Zbl

[30] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976, vi+516 pp. | DOI | MR | Zbl

[31] S. Katok, Fuchsian groups, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1992, x+175 pp. | MR | Zbl

[32] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, 11, Kanô Memorial Lectures, 1, Iwanami Shoten, Publishers, Tokyo; Princeton Univ. Press, Princeton, NJ, 1971, xiv+267 pp. | MR | MR | Zbl | Zbl

[33] D. Jakobson, I. Polterovich, J. A. Toth, “A lower bound for the remainder in Weyl's law on negatively curved surfaces”, Int. Math. Res. Not. IMRN, 2008:2 (2008), rnm142, 38 pp. ; (2007 (v1 – 2006)), 27 pp., arXiv: math/0612250 | DOI | MR | Zbl

[34] N. I. Akhieser, I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbucher und Monogr., IV, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | MR | Zbl | Zbl

[35] H. P. McKean, Jr., I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Differential Geometry, 1:1 (1967), 43–69 | DOI | MR | Zbl

[36] A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153 | DOI | MR | Zbl

[37] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta-function”, Duke Math. J., 43:3 (1976), 441–482 | DOI | MR | Zbl

[38] D. A. Popov, “On the Selberg trace formula for strictly hyperbolic groups”, Funct. Anal. Appl., 47:4 (2013), 290–301 | DOI | DOI | MR | Zbl

[39] Y. Colin de Verdière, “Spectre du laplacien et longueurs des géodésiques périodiques. I”, Compositio Math., 27 (1973), 83–106 | MR | Zbl

[40] J. Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math., 24 (1974), 65–82 | DOI | MR | Zbl

[41] H. Donnelly, “On the wave equation asymptotics of a compact negatively curved surface”, Invent. Math., 45:2 (1978), 115–137 | DOI | MR | Zbl

[42] D. A. Popov, “Explicit formula for the spectral counting function of the Laplace operator on a compact Riemannian surface of genus $g>1$”, Funct. Anal. Appl., 46:2 (2012), 133–146 | DOI | DOI | MR | Zbl

[43] D. A. Popov, “On the Weyl formula for the Laplace operator on hyperbolic Riemann surfaces”, Funct. Anal. Appl., 48:2 (2014), 150–153 | DOI | DOI | MR | Zbl

[44] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[45] A. S. Besicovitch, Almost periodic functions, Dover Publications, Inc., New York, 1955, xiii+180 pp. | MR | Zbl

[46] P. M. Bleher, Zheming Chang, F. J. Dyson, J. L. Lebowitz, “Distribution of the error term for the number of lattice points inside a shifted circle”, Comm. Math. Phys., 154:3 (1993), 433–469 | DOI | MR | Zbl

[47] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415 | DOI | MR | Zbl

[48] Yuk-Kam Lau, “On the existence of limiting distributions of some number-theoretic error terms”, J. Number Theory, 94:2 (2002), 359–374 | DOI | MR | Zbl

[49] A. Bäcker, F. Steiner, “Quantum chaos and quantum ergodicity”, Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, 2001, 717–751 | DOI | MR | Zbl

[50] M. L. Mehta, Random matrices, Pure Appl. Math. (Amst.), 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004, xviii+688 pp. | MR | Zbl

[51] W. Luo, P. Sarnak, “Number variance for arithmetic hyperbolic surfaces”, Comm. Math. Phys., 161:2 (1994), 419–432 | DOI | MR | Zbl