Structures of non-classical discontinuities in solutions of hyperbolic systems of equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 47-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Discontinuity structures in solutions of a hyperbolic system of equations are considered. The system of equations has a rather general form and, in particular, can describe the longitudinal and torsional non-linear waves in elastic rods in the simplest setting and also one-dimensional waves in unbounded elastic media. The properties of discontinuities in solutions of these equations have been investigated earlier under the assumption that only the relations following from the conservation laws for the longitudinal momentum and angular momentum about the axis of the rod and the displacement continuity condition hold on the discontinuities. The shock adiabat has been studied. This paper deals with stationary discontinuity structures under the assumption that viscosity is the main governing mechanism inside the structure. Some segments of the shock adiabat are shown to correspond to evolutionary discontinuities without structure. It is also shown that there are special discontinuities on which an additional relation must hold, which arises from the condition that a discontinuity structure exists. The additional relation depends on the processes in the structure. Special discontinuities satisfy evolutionary conditions that differ from the well-known Lax conditions. Conclusions are discussed, which can also be of interest in the case of other systems of hyperbolic equations. Bibliography: 58 titles.
Keywords: shock waves, non-classical discontinuities, vanishing viscosity, discontinuity structures.
@article{RM_2022_77_1_a1,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {Structures of non-classical discontinuities in solutions of hyperbolic systems of equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {47--79},
     year = {2022},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - Structures of non-classical discontinuities in solutions of hyperbolic systems of equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 47
EP  - 79
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/
LA  - en
ID  - RM_2022_77_1_a1
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T Structures of non-classical discontinuities in solutions of hyperbolic systems of equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 47-79
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/
%G en
%F RM_2022_77_1_a1
A. G. Kulikovskii; A. P. Chugainova. Structures of non-classical discontinuities in solutions of hyperbolic systems of equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 47-79. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/

[1] M. Ergashov, “A study of the propagation of elastic waves in wound structures taking into account their rotation under extension”, J. Appl. Math. Mech., 56:1 (1992), 117–124 | DOI | MR | Zbl

[2] Kh. G. Umarov, “Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length”, Mech. Solids, 54:5 (2019), 726–740 | DOI | DOI | Zbl

[3] V. I. Erofeev, V. V. Kazhaev, N. P. Semerikova, Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost, Fizmatlit, M., 2002, 208 pp.

[4] V. I. Erofeev, N. V. Klyueva, “Rasprostranenie nelineinykh krutilnykh voln v sterzhne iz raznomodulnogo materiala”, Izv. RAN. MTT, 2003, no. 5, 147–153

[5] N. Sugimoto, Y. Yamane, T. Kakutani, “Oscillatory structured shock waves in a nonlinear elastic rod with weak viscoelasticity”, J. Appl. Mech., 51:4 (1984), 766–772 | DOI

[6] Shan-yuan Zhang, Zhi-fang Liu, “Three kinds of nonlinear dispersive waves in elastic rods with finite deformation”, Appl. Math. Mech. (English Ed.), 29:7 (2008), 909–917 | DOI | MR | Zbl

[7] S. S. Singh, “Soliton solutions of nonlinear wave equation in finite de-formation elastic cylindrical rod by solitary wave ansatz method”, Int. J. Phys. Res., 4:1 (2016), 12–14 | DOI

[8] A. A. Malashin, “Longitudinal, transverse, and torsion waves and oscillations in musical strings”, Dokl. Phys., 54:1 (2009), 43–46 | DOI | MR | Zbl

[9] A. G. Kulikovskii, A. P. Chugainova, “Long nonlinear waves in anisotropic cylinders”, Comput. Math. Math. Phys., 57:7 (2017), 1194–1200 | DOI | DOI | MR | Zbl

[10] A. G. Kulikovskii, A. P. Chugainova, “Shock waves in anisotropic cylinders”, Proc. Steklov Inst. Math., 300 (2018), 100–113 | DOI | DOI | MR | Zbl

[11] A. P. Chugainova, A. G. Kulikovskii, “Longitudinal and torsional shock waves in anisotropic elastic cylinders”, Z. Angew. Math. Phys., 71:1 (2020), 17, 15 pp. | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp. | MR | MR | Zbl

[13] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl

[14] A. G. Kulikovskii, A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russian Math. Surveys, 63:2 (2008), 283–350 | DOI | DOI | MR | Zbl

[15] P. G. LeFloch, Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2002, x+294 pp. | DOI | MR | Zbl

[16] N. Bedjaoui, P. G. LeFloch, “Diffusive-dispersive travelling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion”, Proc. Roy. Soc. Edinburgh Sect. A, 134:5 (2004), 815–843 | DOI | MR | Zbl

[17] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 118, Chapman Hall/CRC, Boca Raton, FL, 2001, xiv+540 pp. | MR | MR | Zbl | Zbl

[18] G. A. El, M. A. Hoefer, M. Shearer, “Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws”, SIAM Rev., 59:1 (2017), 3–61 | DOI | MR | Zbl

[19] D. Jacobs, B. McKinney, M. Shearer, “Travelling wave solutions of the modified Korteweg–de Vries–Burgers equation”, J. Differential Equations, 116:2 (1995), 448–467 | DOI | MR | Zbl

[20] A. L. Bertozzi, A. Münch, M. Shearer, “Undercompressive shocks in thin film flows”, Phys. D, 134:4 (1999), 431–464 | DOI | MR | Zbl

[21] B. Hayes, M. Shearer, “Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes”, Proc. Roy. Soc. Edinburgh Sect. A, 129:4 (1999), 733–754 | DOI | MR | Zbl

[22] A. P. Chugainova, V. A. Shargatov, “Traveling waves and undercompressive shocks in solutions of the generalized Korteweg–de Vries–Burgers equation with a time-dependent dissipation coefficient distribution”, Eur. Phys. J. Plus, 135:8 (2020), 635, 18 pp. | DOI

[23] A. G. Kulikovskii, “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami. Volny rekombinatsii”, PMM, 32:6 (1968), 1125–1131 | Zbl

[24] A. G. Kulikovskii, “Strong discontinuities in flows of continuous media and their structure”, Proc. Steklov Inst. Math., 182 (1990), 285–317 | MR | Zbl

[25] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau [Plenum], New York, 1985, xxi+597 pp. | MR | MR

[26] Yu. P. Raizer, Lazernaya iskra i rasprostranenie razryadov, Nauka, M., 1974, 308 pp.

[27] A. B. Freidin, E. N. Vilchevskaya, I. K. Korolev, “Stress-assist chemical reactions front propagation in deformable solids”, Internat. J. Engrg. Sci., 83 (2014), 57–75 | DOI | MR | Zbl

[28] A. B. Freidin, L. L. Sharipova, “Two-phase equilibrium microstructures against optimal composite microstructures”, Arch. Appl. Mech., 89 (2019), 561–580 | DOI

[29] N. Bedjaoui, P. G. LeFloch, “Diffusive-dispersive travelling waves and kinetic relations. II. A hyperbolic-elliptic model of phase-transition dynamics”, Proc. Roy. Soc. Edinburgh Sect. A, 132:3 (2002), 545–565 | DOI | MR | Zbl

[30] P. Germain, E. H. Lee, “On shock waves in elastic-plastic solids”, J. Mech. Phys. Solids, 21:6 (1973), 359–382 | DOI | Zbl

[31] V. M. Sadovskii, Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Nauka, M., 1997, 208 pp. | MR | Zbl

[32] S. K. Godunov, E. I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Acad./Plenum Publ., New York, 2003, viii+258 pp. | DOI | MR | Zbl | Zbl

[33] S. K. Godunov, I. M. Peshkov, “Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium”, Comput. Math. Math. Phys., 50:8 (2010), 1409–1426 | DOI | MR | Zbl

[34] N. Favrie, S. Gavrilyuk, “Dynamics of shock waves in elastic-plastic solids”, CANUM 2010, 40e congrès national d'analyse numérique, ESAIM Proc., 33, EDP Sci., Les Ulis, 2011, 50–67 | DOI | MR | Zbl

[35] A. G. Kulikovskii, A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56:4 (2016), 637–649 | DOI | DOI | MR | Zbl

[36] A. P. Chugainova, A. G. Kulikovskii, “Shock waves in an incompressible anisotropic elastoplastic medium with hardening and their structures”, Appl. Math. Comput., 401 (2021), 126077, 11 pp. | DOI | MR | Zbl

[37] A. G. Kulikovskii, “A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities”, Soviet Physics. Dokl., 29:4 (1984), 283–285 | MR

[38] A. P. Chugainova, V. A. Shargatov, “Analytical description of the structure of special discontinuities described by a generalized KdV–Burgers equation”, Commun. Nonlinear Sci. Numer. Simul., 66 (2019), 129–146 | DOI | MR | Zbl

[39] V. A. Shargatov, A. P. Chugainova, “Stability analysis of traveling wave solutions of a generalized Korteweg–de Vries–Burgers equation with variable dissipation parameter”, J. Comput. Appl. Math., 397 (2021), 113654, 17 pp. | DOI | MR | Zbl

[40] A. G. Kulikovskii, A. P. Chugainova, “Modeling the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44:6 (2004), 1062–1068 | MR | Zbl

[41] A. T. Il'ichev, A. P. Chugainova, V. A. Shargatov, “Spectral stability of special discontinuities”, Dokl. Math., 91:3 (2015), 347–351 | DOI | DOI | MR | Zbl

[42] A. P. Chugainova, V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 56:2 (2016), 263–277 | DOI | DOI | MR | Zbl

[43] A. G. Kulikovskii, A. P. Chugainova, V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity”, Comput. Math. Math. Phys., 56:7 (2016), 1355–1362 | DOI | DOI | MR | Zbl

[44] A. P. Chugainova, A. T. Il'ichev, A. G. Kulikovskii, V. A. Shargatov, “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | DOI | MR | Zbl

[45] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. Ser. 2, 29, Amer. Math. Soc., Providence, RI, 1963, 295–381 | DOI | MR | MR | Zbl | Zbl

[46] A. A. Barmin, A. G. Kulikovskii, “Ob udarnykh volnakh, ionizuyuschikh gaz, nakhodyaschiisya v elektomagnitnom pole”, Dokl. AN SSSR, 178:1 (1968), 55–58

[47] A. G. Kulikovskii, E. I. Sveshnikova, “The formation of an anisotropic elastic medium on the compaction front of a stream of particles”, J. Appl. Math. Mech., 79:6 (2015), 521–530 | DOI

[48] O. A. Oleĭnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Amer. Math. Soc. Transl. Ser. 2, 33, Amer. Math. Soc., Providence, RI, 1963, 285–290 | DOI | MR | Zbl

[49] G. Ya. Galin, “Shock waves in media with arbitrary equations of state”, Soviet Physics. Dokl., 119(3) (1958), 244–247 | MR | Zbl

[50] G. Ya. Galin, “A theory of shock waves”, Soviet Physics. Dokl., 4 (1960), 757–760 | MR | Zbl

[51] A. G. Kulikovskii, A. P. Chugainova, “Struktury razryvov v resheniyakh uravnenii, opisyvayuschikh prodolno-krutilnye volny v uprugikh sterzhnyakh”, Dokl. RAN. Fizika, tekhnicheskie nauki, 497:1 (2021), 49–52 | DOI

[52] E. I. Sveshnikova, “Riemann waves in an elastic medium with small cubic anisotropy”, J. Appl. Math. Mech., 69:1 (2005), 71–78 | DOI | MR | Zbl

[53] E. I. Sveshnikova, “Shock waves in an elastic medium with cubic anisotropy”, J. Appl. Math. Mech., 70:4 (2006), 611–620 | DOI | MR | Zbl

[54] L. I. Sedov, Mechanics of continuous media, v. 1, Ser. Theoret. Appl. Mech., 4, World Sci. Publ., River Edge, NJ, 1997, xx+614+I25 pp. | DOI | MR | MR | Zbl | Zbl

[55] A. G. Kulikovskii, E. I. Sveshnikova, Nelineinye volny v uprugikh sredakh, Moskovskii litsei, M., 1998, 412 pp.

[56] A. G. Kulikovskii, E. I. Sveshnikova, “On shock wave propagation in stressed isotropic nonlinearly elastic media”, J. Appl. Math. Mech., 44:3 (1980), 367–374 | DOI | MR | Zbl

[57] A. G. Kulikovskii, E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium”, J. Appl. Math. Mech., 46:5 (1982), 667–673 | DOI | Zbl

[58] A. I. Akhiezer, G. Ia. Liubarskii, R. V. Polovin, “The stability of shock waves in magnetohydrodynamics”, Soviet Physics. JETP, 35:8 (1959), 507–511 | MR | Zbl