@article{RM_2022_77_1_a1,
author = {A. G. Kulikovskii and A. P. Chugainova},
title = {Structures of non-classical discontinuities in solutions of hyperbolic systems of equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {47--79},
year = {2022},
volume = {77},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/}
}
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Structures of non-classical discontinuities in solutions of hyperbolic systems of equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 47 EP - 79 VL - 77 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/ LA - en ID - RM_2022_77_1_a1 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Structures of non-classical discontinuities in solutions of hyperbolic systems of equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 47-79 %V 77 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/ %G en %F RM_2022_77_1_a1
A. G. Kulikovskii; A. P. Chugainova. Structures of non-classical discontinuities in solutions of hyperbolic systems of equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 47-79. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a1/
[1] M. Ergashov, “A study of the propagation of elastic waves in wound structures taking into account their rotation under extension”, J. Appl. Math. Mech., 56:1 (1992), 117–124 | DOI | MR | Zbl
[2] Kh. G. Umarov, “Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length”, Mech. Solids, 54:5 (2019), 726–740 | DOI | DOI | Zbl
[3] V. I. Erofeev, V. V. Kazhaev, N. P. Semerikova, Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost, Fizmatlit, M., 2002, 208 pp.
[4] V. I. Erofeev, N. V. Klyueva, “Rasprostranenie nelineinykh krutilnykh voln v sterzhne iz raznomodulnogo materiala”, Izv. RAN. MTT, 2003, no. 5, 147–153
[5] N. Sugimoto, Y. Yamane, T. Kakutani, “Oscillatory structured shock waves in a nonlinear elastic rod with weak viscoelasticity”, J. Appl. Mech., 51:4 (1984), 766–772 | DOI
[6] Shan-yuan Zhang, Zhi-fang Liu, “Three kinds of nonlinear dispersive waves in elastic rods with finite deformation”, Appl. Math. Mech. (English Ed.), 29:7 (2008), 909–917 | DOI | MR | Zbl
[7] S. S. Singh, “Soliton solutions of nonlinear wave equation in finite de-formation elastic cylindrical rod by solitary wave ansatz method”, Int. J. Phys. Res., 4:1 (2016), 12–14 | DOI
[8] A. A. Malashin, “Longitudinal, transverse, and torsion waves and oscillations in musical strings”, Dokl. Phys., 54:1 (2009), 43–46 | DOI | MR | Zbl
[9] A. G. Kulikovskii, A. P. Chugainova, “Long nonlinear waves in anisotropic cylinders”, Comput. Math. Math. Phys., 57:7 (2017), 1194–1200 | DOI | DOI | MR | Zbl
[10] A. G. Kulikovskii, A. P. Chugainova, “Shock waves in anisotropic cylinders”, Proc. Steklov Inst. Math., 300 (2018), 100–113 | DOI | DOI | MR | Zbl
[11] A. P. Chugainova, A. G. Kulikovskii, “Longitudinal and torsional shock waves in anisotropic elastic cylinders”, Z. Angew. Math. Phys., 71:1 (2020), 17, 15 pp. | DOI | MR | Zbl
[12] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp. | MR | MR | Zbl
[13] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[14] A. G. Kulikovskii, A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russian Math. Surveys, 63:2 (2008), 283–350 | DOI | DOI | MR | Zbl
[15] P. G. LeFloch, Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2002, x+294 pp. | DOI | MR | Zbl
[16] N. Bedjaoui, P. G. LeFloch, “Diffusive-dispersive travelling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion”, Proc. Roy. Soc. Edinburgh Sect. A, 134:5 (2004), 815–843 | DOI | MR | Zbl
[17] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 118, Chapman Hall/CRC, Boca Raton, FL, 2001, xiv+540 pp. | MR | MR | Zbl | Zbl
[18] G. A. El, M. A. Hoefer, M. Shearer, “Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws”, SIAM Rev., 59:1 (2017), 3–61 | DOI | MR | Zbl
[19] D. Jacobs, B. McKinney, M. Shearer, “Travelling wave solutions of the modified Korteweg–de Vries–Burgers equation”, J. Differential Equations, 116:2 (1995), 448–467 | DOI | MR | Zbl
[20] A. L. Bertozzi, A. Münch, M. Shearer, “Undercompressive shocks in thin film flows”, Phys. D, 134:4 (1999), 431–464 | DOI | MR | Zbl
[21] B. Hayes, M. Shearer, “Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes”, Proc. Roy. Soc. Edinburgh Sect. A, 129:4 (1999), 733–754 | DOI | MR | Zbl
[22] A. P. Chugainova, V. A. Shargatov, “Traveling waves and undercompressive shocks in solutions of the generalized Korteweg–de Vries–Burgers equation with a time-dependent dissipation coefficient distribution”, Eur. Phys. J. Plus, 135:8 (2020), 635, 18 pp. | DOI
[23] A. G. Kulikovskii, “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami. Volny rekombinatsii”, PMM, 32:6 (1968), 1125–1131 | Zbl
[24] A. G. Kulikovskii, “Strong discontinuities in flows of continuous media and their structure”, Proc. Steklov Inst. Math., 182 (1990), 285–317 | MR | Zbl
[25] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau [Plenum], New York, 1985, xxi+597 pp. | MR | MR
[26] Yu. P. Raizer, Lazernaya iskra i rasprostranenie razryadov, Nauka, M., 1974, 308 pp.
[27] A. B. Freidin, E. N. Vilchevskaya, I. K. Korolev, “Stress-assist chemical reactions front propagation in deformable solids”, Internat. J. Engrg. Sci., 83 (2014), 57–75 | DOI | MR | Zbl
[28] A. B. Freidin, L. L. Sharipova, “Two-phase equilibrium microstructures against optimal composite microstructures”, Arch. Appl. Mech., 89 (2019), 561–580 | DOI
[29] N. Bedjaoui, P. G. LeFloch, “Diffusive-dispersive travelling waves and kinetic relations. II. A hyperbolic-elliptic model of phase-transition dynamics”, Proc. Roy. Soc. Edinburgh Sect. A, 132:3 (2002), 545–565 | DOI | MR | Zbl
[30] P. Germain, E. H. Lee, “On shock waves in elastic-plastic solids”, J. Mech. Phys. Solids, 21:6 (1973), 359–382 | DOI | Zbl
[31] V. M. Sadovskii, Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Nauka, M., 1997, 208 pp. | MR | Zbl
[32] S. K. Godunov, E. I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Acad./Plenum Publ., New York, 2003, viii+258 pp. | DOI | MR | Zbl | Zbl
[33] S. K. Godunov, I. M. Peshkov, “Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium”, Comput. Math. Math. Phys., 50:8 (2010), 1409–1426 | DOI | MR | Zbl
[34] N. Favrie, S. Gavrilyuk, “Dynamics of shock waves in elastic-plastic solids”, CANUM 2010, 40e congrès national d'analyse numérique, ESAIM Proc., 33, EDP Sci., Les Ulis, 2011, 50–67 | DOI | MR | Zbl
[35] A. G. Kulikovskii, A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56:4 (2016), 637–649 | DOI | DOI | MR | Zbl
[36] A. P. Chugainova, A. G. Kulikovskii, “Shock waves in an incompressible anisotropic elastoplastic medium with hardening and their structures”, Appl. Math. Comput., 401 (2021), 126077, 11 pp. | DOI | MR | Zbl
[37] A. G. Kulikovskii, “A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities”, Soviet Physics. Dokl., 29:4 (1984), 283–285 | MR
[38] A. P. Chugainova, V. A. Shargatov, “Analytical description of the structure of special discontinuities described by a generalized KdV–Burgers equation”, Commun. Nonlinear Sci. Numer. Simul., 66 (2019), 129–146 | DOI | MR | Zbl
[39] V. A. Shargatov, A. P. Chugainova, “Stability analysis of traveling wave solutions of a generalized Korteweg–de Vries–Burgers equation with variable dissipation parameter”, J. Comput. Appl. Math., 397 (2021), 113654, 17 pp. | DOI | MR | Zbl
[40] A. G. Kulikovskii, A. P. Chugainova, “Modeling the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44:6 (2004), 1062–1068 | MR | Zbl
[41] A. T. Il'ichev, A. P. Chugainova, V. A. Shargatov, “Spectral stability of special discontinuities”, Dokl. Math., 91:3 (2015), 347–351 | DOI | DOI | MR | Zbl
[42] A. P. Chugainova, V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 56:2 (2016), 263–277 | DOI | DOI | MR | Zbl
[43] A. G. Kulikovskii, A. P. Chugainova, V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity”, Comput. Math. Math. Phys., 56:7 (2016), 1355–1362 | DOI | DOI | MR | Zbl
[44] A. P. Chugainova, A. T. Il'ichev, A. G. Kulikovskii, V. A. Shargatov, “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | DOI | MR | Zbl
[45] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. Ser. 2, 29, Amer. Math. Soc., Providence, RI, 1963, 295–381 | DOI | MR | MR | Zbl | Zbl
[46] A. A. Barmin, A. G. Kulikovskii, “Ob udarnykh volnakh, ionizuyuschikh gaz, nakhodyaschiisya v elektomagnitnom pole”, Dokl. AN SSSR, 178:1 (1968), 55–58
[47] A. G. Kulikovskii, E. I. Sveshnikova, “The formation of an anisotropic elastic medium on the compaction front of a stream of particles”, J. Appl. Math. Mech., 79:6 (2015), 521–530 | DOI
[48] O. A. Oleĭnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Amer. Math. Soc. Transl. Ser. 2, 33, Amer. Math. Soc., Providence, RI, 1963, 285–290 | DOI | MR | Zbl
[49] G. Ya. Galin, “Shock waves in media with arbitrary equations of state”, Soviet Physics. Dokl., 119(3) (1958), 244–247 | MR | Zbl
[50] G. Ya. Galin, “A theory of shock waves”, Soviet Physics. Dokl., 4 (1960), 757–760 | MR | Zbl
[51] A. G. Kulikovskii, A. P. Chugainova, “Struktury razryvov v resheniyakh uravnenii, opisyvayuschikh prodolno-krutilnye volny v uprugikh sterzhnyakh”, Dokl. RAN. Fizika, tekhnicheskie nauki, 497:1 (2021), 49–52 | DOI
[52] E. I. Sveshnikova, “Riemann waves in an elastic medium with small cubic anisotropy”, J. Appl. Math. Mech., 69:1 (2005), 71–78 | DOI | MR | Zbl
[53] E. I. Sveshnikova, “Shock waves in an elastic medium with cubic anisotropy”, J. Appl. Math. Mech., 70:4 (2006), 611–620 | DOI | MR | Zbl
[54] L. I. Sedov, Mechanics of continuous media, v. 1, Ser. Theoret. Appl. Mech., 4, World Sci. Publ., River Edge, NJ, 1997, xx+614+I25 pp. | DOI | MR | MR | Zbl | Zbl
[55] A. G. Kulikovskii, E. I. Sveshnikova, Nelineinye volny v uprugikh sredakh, Moskovskii litsei, M., 1998, 412 pp.
[56] A. G. Kulikovskii, E. I. Sveshnikova, “On shock wave propagation in stressed isotropic nonlinearly elastic media”, J. Appl. Math. Mech., 44:3 (1980), 367–374 | DOI | MR | Zbl
[57] A. G. Kulikovskii, E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium”, J. Appl. Math. Mech., 46:5 (1982), 667–673 | DOI | Zbl
[58] A. I. Akhiezer, G. Ia. Liubarskii, R. V. Polovin, “The stability of shock waves in magnetohydrodynamics”, Soviet Physics. JETP, 35:8 (1959), 507–511 | MR | Zbl