What do Abelian categories form?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 1-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Given two finitely presentable Abelian categories $A$ and $B$, we outline a construction of an Abelian category of functors from $A$ to $B$, which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of $A$ and $B$. The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology. Bibliography: 29 titles.
Keywords: Abelian category, stable category, 2-category, Hochschild cohomology, Mac Lane cohomology.
@article{RM_2022_77_1_a0,
     author = {D. B. Kaledin},
     title = {What do {Abelian} categories form?},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--45},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/}
}
TY  - JOUR
AU  - D. B. Kaledin
TI  - What do Abelian categories form?
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 1
EP  - 45
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/
LA  - en
ID  - RM_2022_77_1_a0
ER  - 
%0 Journal Article
%A D. B. Kaledin
%T What do Abelian categories form?
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 1-45
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/
%G en
%F RM_2022_77_1_a0
D. B. Kaledin. What do Abelian categories form?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 1-45. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/