@article{RM_2022_77_1_a0,
author = {D. B. Kaledin},
title = {What do {Abelian} categories form?},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--45},
year = {2022},
volume = {77},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/}
}
D. B. Kaledin. What do Abelian categories form?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 1-45. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/
[1] M. Artin, A. Grothendieck, J. L. Verdier (eds.), Théorie de topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, v. 1, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, xix+525 pp. ; v. 2, 270, iv+418 pp. ; v. 3, 305, 1973, vi+640 pp. | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[2] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl
[3] A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2 (1976/77), 207–220 | DOI | MR | Zbl
[4] I. Bucur, A. Deleanu, Introduction to the theory of categories and functors, Pure Appl. Math., XIX, Intersci. Publ. John Wiley Sons, Ltd., London–New York–Sydney, 1968, x+224 pp. | MR | MR | Zbl | Zbl
[5] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl
[6] A. Dold, “Homology of symmetric products and other functors of complexes”, Ann. of Math. (2), 68 (1958), 54–80 | DOI | MR | Zbl
[7] W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, J. H. Smith, Homotopy limit functors on model categories and homotopical categories, Math. Surveys Monogr., 113, Amer. Math. Soc., Providence, RI, 2004, viii+181 pp. | DOI | MR | Zbl
[8] W. G. Dwyer, J. Spaliński, “Homotopy theories and model categories”, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, 73–126 | DOI | MR | Zbl
[9] S. I. Gelfand, Yu. I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996, xviii+372 pp. | DOI | MR | MR | Zbl | Zbl
[10] A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tôhoku Math. J. (2), 9 (1957), 119–221 | DOI | MR | Zbl | Zbl
[11] A. Grothendieck, “Catégories fibrées et descente”, Revêtements étales et groupe fondamental, Séminaire de géométrie algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Math., 224, Springer-Verlag, Berlin–New York, 1971, Exp. VI, 145–194 | MR | Zbl
[12] M. Hovey, Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999, xii+209 pp. | DOI | MR | Zbl
[13] M. Jibladze, T. Pirashvili, “Cohomology of algebraic theories”, J. Algebra, 137:2 (1991), 253–296 | DOI | MR | Zbl
[14] P. T. Johnstone, Topos theory, London Math. Soc. Monogr., 10, Academic Press, London–New York, 1977, xxiii+367 pp. | MR | MR | Zbl
[15] D. Kaledin, “Trace theories and localization”, Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, Amer. Math. Soc., Providence, RI, 2015, 227–262 | DOI | MR | Zbl
[16] D. Kaledin, “How to glue derived categories”, Bull. Math. Sci., 8:3 (2018), 477–602 | DOI | MR | Zbl
[17] D. V. Kaledin, “Adjunction in 2-categories”, Russian Math. Surveys, 75:5 (2020), 883–927 | DOI | DOI | MR | Zbl
[18] D. Kaledin, W. Lowen, “Cohomology of exact categories and (non-)additive sheaves”, Adv. Math., 272 (2015), 652–698 | DOI | MR | Zbl
[19] M. Kashiwara, P. Schapira, Categories and sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, Berlin, 2006, x+497 pp. | DOI | MR | Zbl
[20] B. Keller, “On differential graded categories”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 151–190 | MR | Zbl
[21] M. Kontsevich, Y. Soibelman, “Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry”, Homological mirror symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 153–219 ; 2006, 70 pp., arXiv: math.RA/0606241 | DOI | MR | Zbl
[22] W. Lowen, M. Van den Bergh, “Deformation theory of abelian categories”, Trans. Amer. Math. Soc., 358:12 (2006), 5441–5483 | DOI | MR | Zbl
[23] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 1967, iv+156 pp. | DOI | MR | Zbl
[24] D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147 | DOI | MR | Zbl
[25] D. Schäppi, “Ind-abelian categories and quasi-coherent sheaves”, Math. Proc. Cambridge Philos. Soc., 157:3 (2014), 391–423 | DOI | MR | Zbl
[26] D. Tamarkin, “What do dg-categories form?”, Compos. Math., 143:5 (2007), 1335–1358 | DOI | MR | Zbl
[27] J. L. Verdier, “Topologies et faisceaux”, Exp. II, Théorie de topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), v. 1, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, 219–263 | DOI | MR | Zbl
[28] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, With a preface by L. Illusie, edited and with a note by G. Maltsiniotis, Astérisque, 239, Soc. Math. France, Paris, 1996, xii+253 pp. | DOI | MR | Zbl
[29] Ch. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1994, xiv+450 pp. | DOI | MR | Zbl