What do Abelian categories form?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 1-45
Voir la notice de l'article provenant de la source Math-Net.Ru
Given two finitely presentable Abelian categories $A$ and $B$, we outline a construction of an Abelian category of functors from $A$ to $B$, which has nice 2-categorical properties and provides an explicit model for a stable category of stable functors between the derived categories of $A$ and $B$. The construction is absolute, so it makes it possible to recover not only Hochschild cohomology but also Mac Lane cohomology.
Bibliography: 29 titles.
Keywords:
Abelian category, stable category, 2-category, Hochschild cohomology, Mac Lane cohomology.
@article{RM_2022_77_1_a0,
author = {D. B. Kaledin},
title = {What do {Abelian} categories form?},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--45},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/}
}
D. B. Kaledin. What do Abelian categories form?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 1, pp. 1-45. http://geodesic.mathdoc.fr/item/RM_2022_77_1_a0/