3-manifolds represented by 4-regular graphs with three Eulerian cycles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 1143-1145
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2021_76_6_a6,
author = {A. V. Malyutin and E. A. Fominykh and E. V. Shumakova},
title = {3-manifolds represented by 4-regular graphs with three {Eulerian} cycles},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1143--1145},
year = {2021},
volume = {76},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/}
}
TY - JOUR AU - A. V. Malyutin AU - E. A. Fominykh AU - E. V. Shumakova TI - 3-manifolds represented by 4-regular graphs with three Eulerian cycles JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 1143 EP - 1145 VL - 76 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/ LA - en ID - RM_2021_76_6_a6 ER -
%0 Journal Article %A A. V. Malyutin %A E. A. Fominykh %A E. V. Shumakova %T 3-manifolds represented by 4-regular graphs with three Eulerian cycles %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 1143-1145 %V 76 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/ %G en %F RM_2021_76_6_a6
A. V. Malyutin; E. A. Fominykh; E. V. Shumakova. 3-manifolds represented by 4-regular graphs with three Eulerian cycles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 1143-1145. http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/
[1] B. Jackson, J. Combin. Theory Ser. B, 53:1 (1991), 80–92 | DOI | MR | Zbl
[2] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, 2nd ed., Springer, Berlin, 2007, xiv+492 pp. | DOI | MR | Zbl
[3] R. Frigerio, B. Martelli, C. Petronio, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl
[4] N. C. Wormald, J. Combin. Theory Ser. B, 31:2 (1981), 156–167 | DOI | MR | Zbl
[5] B. Bollobás, J. London Math. Soc. (2), 26:2 (1982), 201–206 | DOI | MR | Zbl