3-manifolds represented by 4-regular graphs with three Eulerian cycles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 1143-1145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2021_76_6_a6,
     author = {A. V. Malyutin and E. A. Fominykh and E. V. Shumakova},
     title = {3-manifolds represented by 4-regular graphs with three {Eulerian} cycles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1143--1145},
     year = {2021},
     volume = {76},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/}
}
TY  - JOUR
AU  - A. V. Malyutin
AU  - E. A. Fominykh
AU  - E. V. Shumakova
TI  - 3-manifolds represented by 4-regular graphs with three Eulerian cycles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 1143
EP  - 1145
VL  - 76
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/
LA  - en
ID  - RM_2021_76_6_a6
ER  - 
%0 Journal Article
%A A. V. Malyutin
%A E. A. Fominykh
%A E. V. Shumakova
%T 3-manifolds represented by 4-regular graphs with three Eulerian cycles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 1143-1145
%V 76
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/
%G en
%F RM_2021_76_6_a6
A. V. Malyutin; E. A. Fominykh; E. V. Shumakova. 3-manifolds represented by 4-regular graphs with three Eulerian cycles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 1143-1145. http://geodesic.mathdoc.fr/item/RM_2021_76_6_a6/

[1] B. Jackson, J. Combin. Theory Ser. B, 53:1 (1991), 80–92 | DOI | MR | Zbl

[2] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, 2nd ed., Springer, Berlin, 2007, xiv+492 pp. | DOI | MR | Zbl

[3] R. Frigerio, B. Martelli, C. Petronio, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl

[4] N. C. Wormald, J. Combin. Theory Ser. B, 31:2 (1981), 156–167 | DOI | MR | Zbl

[5] B. Bollobás, J. London Math. Soc. (2), 26:2 (1982), 201–206 | DOI | MR | Zbl