Multitype branching processes in random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 1019-1063 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey of results in the theory of multitype branching processes evolving in a random environment is presented. Bibliography: 104 titles.
Keywords: multitype branching processes, random environment, limit theorems, intermittency.
@article{RM_2021_76_6_a1,
     author = {V. A. Vatutin and E. E. Dyakonova},
     title = {Multitype branching processes in random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1019--1063},
     year = {2021},
     volume = {76},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_6_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. Dyakonova
TI  - Multitype branching processes in random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 1019
EP  - 1063
VL  - 76
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_6_a1/
LA  - en
ID  - RM_2021_76_6_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. Dyakonova
%T Multitype branching processes in random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 1019-1063
%V 76
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2021_76_6_a1/
%G en
%F RM_2021_76_6_a1
V. A. Vatutin; E. E. Dyakonova. Multitype branching processes in random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 1019-1063. http://geodesic.mathdoc.fr/item/RM_2021_76_6_a1/

[1] V. I. Afanasev, “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matem., 5:1 (1993), 45–58 | MR | Zbl

[2] V. I. Afanasyev, Ch. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[3] V. I. Afanasyev, Ch. Böinghoff, G. Kersting, V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré Probab. Stat., 50:2 (2014), 602–627 | DOI | MR | Zbl

[4] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[5] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl

[6] M. Aizenman, S. Warzel, Random operators. Disorder effects on quantum spectra and dynamics, Grad. Stud. Math., 168, Amer. Math. Soc., Providence, RI, 2015, xiv+326 pp. | MR | Zbl

[7] P. W. Anderson, “Absence of diffusion in certain random lattices”, Phys. Rev. (2), 109:5 (1958), 1492–1505 | DOI

[8] T. Antal, P. L. Krapivsky, “Exact solution of a two-type branching process: clone size distribution in cell division kinetics”, J. Stat. Mech. Theory Exp., 2010, no. 7, P07028, 22 pp. | DOI | MR | Zbl

[9] K. B. Athreya, S. Karlin, “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[10] K. B. Athreya, S. Karlin, “Branching processes with random environments. II. Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[11] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer, Berlin, 1972, xi+287 pp. | DOI | MR | Zbl

[12] E. Baake, H.-O. Georgii, “Mutation, selection, and ancestry in branching models: a variational approach”, J. Math. Biol., 54:2 (2007), 257–303 | DOI | MR | Zbl

[13] V. Bansaye, V. Vatutin, “On the survival probability for a class of subcritical branching processes in random environment”, Bernoulli, 23:1 (2017), 58–88 | DOI | MR | Zbl

[14] J. Bertoin, “The structure of the allelic partition of the total population for Galton–Watson processes with neutral mutations”, Ann. Probab., 37:4 (2009), 1502–1523 | DOI | MR | Zbl

[15] L. V. Bogachev, “Random walk in random environments”, Encyclopedia of mathematical physics, v. 4, Elsevier, Oxford, 2006, 353–371 | DOI

[16] A. Bogdanov, P. Kevei, M. Szalai, D. Virok, Stochastic modeling of in vitro bactericidal potency, 2021, 20 pp., arXiv: 2104.11525

[17] Ch. Böinghoff, “Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions”, Stochastic Process. Appl., 124:11 (2014), 3553–3577 | DOI | MR | Zbl

[18] K. A. Borovkov, V. A. Vatutin, “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl

[19] J.-P. Bouchaud, A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications”, Phys. Rep., 195:4-5 (1990), 127–293 | DOI | MR

[20] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progr. Probab. Statist., 8, Birkhäuser Boston, Inc., Boston, MA, 1985, xii+283 pp. | DOI | MR | Zbl

[21] C. D. Brummitt, R. M. D'Souza, E. A. Leicht, “Suppressing cascades of load in interdependent networks”, Proc. Nat. Acad. Sci., 109:12 (2012), E680–E689 | DOI

[22] D. Buraczewski, E. Damek, Y. Guivarc'h, S. Mentemeier, “On multidimensional Mandelbrot cascades”, J. Difference Equ. Appl., 20:11 (2014), 1523–1567 | DOI | MR | Zbl

[23] D. Buraczewski, S. Mentemeier, “Precise large deviation results for products of random matrices”, Ann. Inst. Henri Poincaré Probab. Stat., 52:3 (2016), 1474–1513 | DOI | MR | Zbl

[24] W. R. Catton, Jr., Bottleneck: humanity's impending impasse, Xlibris Corp., 2009, v+290 pp.

[25] H. Cohn, “On the growth of the multitype supercritical branching process in a random environment”, Ann. Probab., 17:3 (1989), 1118–1123 | DOI | MR | Zbl

[26] R. Durrett, J. Foo, K. Leder, J. Mayberry, F. Michor, “Evolutionary dynamics of tumor progression with random fitness values”, Theoret. Population Biol., 78:1 (2010), 54–66 | DOI | Zbl

[27] R. Durrett, D. R. Schmidt, J. Schweinsberg, “A waiting time problem arising from the study of multi-stage carcinogenesis”, Ann. Appl. Probab., 19:2 (2009), 676–718 | DOI | MR | Zbl

[28] E. E. Dyakonova, “Asymptotic behaviour of the probability of non-extinction for a multi-type branching process in a random environment”, Discrete Math. Appl., 9:2 (1999), 119–136 | DOI | DOI | MR | Zbl

[29] E. E. Dyakonova, “On multitype branching processes in a random environment”, Proceedings of the seminar on stability problems for stochastic models, Part I (Eger, 2001), J. Math. Sci. (N.Y.), 111:3 (2002), 3537–3541 | DOI | MR | Zbl

[30] E. E. Dyakonova, “Critical multitype branching processes in a random environment”, Discrete Math. Appl., 17:6 (2007), 587–606 | DOI | DOI | MR | Zbl

[31] E. E. Dyakonova, “Multitype Galton–Watson branching processes in Markovian random environment”, Theory Probab. Appl., 56:3 (2011), 508–517 | DOI | DOI | MR | Zbl

[32] E. E. Dyakonova, “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl., 22:5-6 (2012), 639–664 | DOI | DOI | MR | Zbl

[33] E. E. Dyakonova, “Multitype subcritical branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 80–89 | DOI | DOI | MR | Zbl

[34] E. E. Dyakonova, “Limit theorem for multitype critical branching process evolving in random environment”, Discrete Math. Appl., 25:3 (2015), 137–147 | DOI | DOI | MR | Zbl

[35] E. E. Dyakonova, “Predelnaya teorema dlya razlozhimogo vetvyaschegosya protsessa v sluchainoi srede”, XVI Vserossiiskii cimpozium po prikladnoi i promyshlennoi matematike (Sochi–Dagomys, 2015), Obozrenie prikl. promyshl. matem., 22:5 (2015), 582–583 http://tvp.ru/conferen/vsppm16/chelso146.pdf

[36] E. E. Dyakonova, “Reduced multitype critical branching processes in random environment”, Discrete Math. Appl., 28:1 (2018), 7–22 | DOI | DOI | MR | Zbl

[37] E. E. Dyakonova, “A subcritical decomposable branching process in a mixed environment”, Discrete Math. Appl., 28:5 (2018), 275–283 | DOI | DOI | MR | Zbl

[38] V. M. Emelyanov, S. L. Timoshenko, M. N. Strikhanov, Vvedenie v relyativistskuyu yadernuyu fiziku, Fizmatlit, M., 2004, 184 pp.

[39] J. Foster, P. Ney, “Decomposable critical multi-type branching processes”, Invited paper for Mahalanobis memorial symposium (Calcutta), Sankhyā Ser. A, 38:1 (1976), 28–37 | MR | Zbl

[40] J. Foster, P. Ney, “Limit laws for decomposable critical branching processes”, Z. Wahrsch. verw. Gebiete, 46 (1978), 13–43 | DOI | MR | Zbl

[41] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31:2 (1960), 457–469 | DOI | MR | Zbl

[42] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl

[43] J. Gärtner, W. König, “The parabolic Anderson model”, Interacting stochastic systems, Springer, Berlin, 2005, 153–179 | DOI | MR | Zbl

[44] J. Geiger, G. Kersting, V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré Probab. Stat., 39:4 (2003), 593–620 | DOI | MR | Zbl

[45] I. Grama, É. Le Page, M. Peigné, “Conditioned limit theorems for products of random matrices”, Probab. Theory Related Fields, 168:3-4 (2017), 601–639 | DOI | MR | Zbl

[46] I. Grama, Q. Liu, E. Pin, “A Kesten–Stigum type theorem for a supercritical multi-type branching process in a random environment”, Ann. Appl. Probab. (to appear); 2019, 51 pp. https://hal.archives-ouvertes.fr/hal-02878026

[47] I. Grama, Quansheng Liu, E. Pin, Berry–Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments, 2020, 50 pp. https://hal.archives-ouvertes.fr/hal-02911865

[48] I. Grama, Q. Liu, E. Pin, Cramér type moderate deviation expansion for supercritical multi-type branching processes in a random environment, 2020, 39 pp. https://hal.archives-ouvertes.fr/hal-02934081

[49] I. Grama, Quansheng Liu, E. Pin, “Convergence in $L^{p}$ for supercritical multi-type branching processes in random environment”, Proc. Steklov Inst. Math., 316 (2022)

[50] Y. Guivarc'h, Quansheng Liu, “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. R. Acad. Sci. Paris Sér. I Math., 332:4 (2001), 339–344 | DOI | MR | Zbl

[51] P. Haccou, P. Jagers, V. A. Vatutin, Branching processes: variation, growth, and extinction of populations, Camb. Stud. Adapt. Dyn., 5, Cambridge Univ. Press, Cambridge, 2005, xii+316 pp. | MR | Zbl

[52] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., 1963, xiv+230 pp. | MR | Zbl

[53] H. Hennion, “Limit theorems for products of positive random matrices”, Ann. Probab., 25:4 (1997), 1545–1587 | DOI | MR | Zbl

[54] F. den Hollander, S. A. Molchanov, O. Zeitouni, Random media at Saint-Flour, Probab. St.-Flour, Springer, Heidelberg, 2012, vi+564 pp. | MR | Zbl

[55] Wenming Hong, Minzhi Liu, V. A. Vatutin, “Limit theorems for supercritical MBPRE with linear fractional offspring distributions”, Markov Process. Related Fields, 25:1 (2019), 1–31 ; (2017), 25 pp., arXiv: 1710.08724 | MR | Zbl

[56] P. Jagers, Branching processes with biological applications, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., Wiley-Interscience [John Wiley Sons], London–New York–Sydney, 1975, xiii+268 pp. | MR | Zbl

[57] N. Kaplan, “Some results about multidimensional branching processes with random environments”, Ann. Probab., 2:3 (1974), 441–455 | DOI | MR | Zbl

[58] G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, Inc., Hoboken, NJ; ISTE, London, 2017, xiv+286 pp. | DOI | Zbl

[59] H. Kesten, “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl

[60] E. S. Key, “Limiting distributions and regeneration times for multitype branching processes with immigration in a random environment”, Ann. Probab., 15:1 (1987), 344–353 | DOI | MR | Zbl

[61] M. Kimura, “The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations”, Genetics, 61:4 (1969), 893–903 | DOI

[62] J. F. C. Kingman, “Subadditive ergodic theory”, Ann. Probab., 1:6 (1973), 883–909 | DOI | MR | Zbl

[63] W. König, Branching random walks in random environment: a survey, 2020, 16 pp., arXiv: 2010.06942

[64] É. Le Page, “Théorèmes limites pour les produits de matrices aléatoires”, Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math., 928, Springer, Berlin–New York, 1982, 258–303 | DOI | MR | Zbl

[65] E. Le Page, M. Peigné, C. Pham, “The survival probability of a critical multi-type branching process in i.i.d. random environment”, Ann. Probab., 46:5 (2018), 2946–2972 | DOI | MR | Zbl

[66] E. Le Page, M. Peigné, C. Pham, “Central limit theorem for a critical multitype branching process in random environments”, Tunis. J. Math., 3:4 (2021), 801–842 | DOI | MR

[67] G. K. Mitov, S. T. Rachev, Young Shin Kim, F. J. Fabozzi, “Barrier option pricing by branching processes”, Int. J. Theor. Appl. Finance, 12:7 (2009), 1055–1073 | DOI | MR | Zbl

[68] M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals”, Nature, 383 (1996), 802–804 | DOI

[69] I. Pázsit, L. Pál, Neutron fluctuations. A treatise on the physics of branching processes, Elsevier Science B.V., Amsterdam, 2008, xviii+340 pp. | DOI | MR | Zbl

[70] Thi Da Cam Pham, “Conditioned limit theorems for products of positive random matrices”, ALEA Lat. Am. J. Probab. Math. Stat., 15:1 (2018), 67–100 | DOI | MR | Zbl

[71] I. S. Osad'ko, “Blinking fluorescence of single semiconductor nanocrystals: basic experimental facts and the theoretical models of blinking”, Phys. Usp., 59:5 (2016), 462–474 | DOI | DOI

[72] J. A. C. Resing, “Polling systems and multitype branching processes”, Queueing Systems Theory Appl., 13:4 (1993), 409–426 | DOI | MR | Zbl

[73] P. Révész, Random walk in random and non-random environments, 2nd ed., World Sci. Publ., Hackensack, NJ, 2005, xvi+380 pp. | DOI | MR | Zbl

[74] A. Roitershtein, “A note on multitype branching processes with immigration in a random environment”, Ann. Probab., 35:4 (2007), 1573–1592 | DOI | MR | Zbl

[75] S. Sagitov, “Linear-fractional branching processes with countably many types”, Stochastic Process. Appl., 123:8 (2013), 2940–2956 | DOI | MR | Zbl

[76] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[77] N. Sidorova, A. Twarowski, “Localisation and ageing in the parabolic Anderson model with Weibull potential”, Ann. Probab., 42:4 (2014), 1666–1698 | DOI | MR | Zbl

[78] W. L. Smith, W. E. Wilkinson, “On branching processes in random environments”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[79] F. Tajima, “Infinite-allele model and infinite-site model in population genetics”, J. Genet., 75:1 (1996), 27–31 | DOI

[80] D. Tanny, “On multitype branching processes in a random environment”, Adv. in Appl. Probab., 13:3 (1981), 464–497 | DOI | MR | Zbl

[81] V. A. Vatutin, “Polling systems and multitype branching processes in random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660 | DOI | DOI | MR | Zbl

[82] V. A. Vatutin, “Multitype branching processes with immigration in random environment, and polling systems”, Siberian Adv. Math., 21:1 (2011), 42–72 | DOI | MR | Zbl

[83] V. Vatutin, “Subcritical branching processes in random environment”, Branching processes and their applications (Badajoz, 2015), Lect. Notes Stat., 219, Springer, Cham, 2016, 97–115 | DOI | MR | Zbl

[84] V. A. Vatutin, E. E. Dyakonova, “Critical branching processes in random environment: the probability of extinction at a given moment”, Discrete Math. Appl., 7:5 (1997), 469–496 | DOI | DOI | MR | Zbl

[85] V. A. Vatutin, E. E. Dyakonova, “Galton–Watson branching processes in a random environment. I. Limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336 | DOI | DOI | MR | Zbl

[86] V. A. Vatutin, E. E. Dyakonova, “Galton–Watson branching processes in a random environment. II. Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309 | DOI | DOI | MR | Zbl

[87] V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177 | DOI | DOI | MR | Zbl

[88] V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment: probability of survival for the critical case”, Theory Probab. Appl., 62:4 (2018), 506–521 | DOI | DOI | MR | Zbl

[89] V. A. Vatutin, E. E. Dyakonova, “Multitype weakly subcritical branching processes in random environment”, Discrete Math. Appl., 31:3 (2021), 207–222 | DOI | DOI | MR | Zbl

[90] V. A. Vatutin, E. E. Dyakonova, “Svoistva mnogotipnykh dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Diskret. matem., 32:3 (2020), 3–23 | DOI | MR

[91] V. A. Vatutin, E. E. D'yakonova, “The survival probability for a class of multitype subcritical branching processes in random environment”, Math. Notes, 107:2 (2020), 189–200 | DOI | DOI | MR | Zbl

[92] V. A. Vatutin, E. E. Dyakonova, “Branching processes in random environment with sibling dependence”, J. Math. Sci. (N.Y.), 246:4 (2020), 569–579 ; (2018), 14 pp., arXiv: 1812.10304 | DOI | MR

[93] V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285, 24 pp. | DOI | MR | Zbl

[94] V. A. Vatutin, E. E. Dyakonova, S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242 | DOI | MR | Zbl

[95] V. A. Vatutin, E. E. Dyakonova, V. A. Topchii, “Critical Galton–Watson branching processes with a countable set of types and infinite second moments”, Sb. Math., 212:1 (2021), 1–24 | DOI | DOI | MR | Zbl

[96] V. Vatutin, Quansheng Liu, “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Probab., 52:3 (2015), 877–893 ; (2014), 21 pp., arXiv: 1403.0746 | DOI | MR | Zbl

[97] V. A. Vatutin, T. M. Televinova, V. P. Chistyakov, Veroyatnostnye metody v fizicheskikh issledovaniyakh, Nauka, M., 1985, 206 pp. | Zbl

[98] V. A. Vatutin, V. Wachtel, “Sudden extinction of a critical branching process in a random environment”, Theory Probab. Appl., 54:3 (2010), 466–484 | DOI | DOI | MR | Zbl

[99] V. Vatutin, V. Wachtel, “Multi-type subcritical branching processes in a random environment”, Adv. in Appl. Probab., 50:A (2018), 281–289 ; Subcritical multitype branching process in random environment, 2017, 6 pp., arXiv: 1711.07453 | DOI | MR | Zbl

[100] V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl

[101] Hui Xiao, I. Grama, Quansheng Liu, Berry–Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices, 2020, 30 pp., arXiv: 2010.00557

[102] O. Zeitouni, “Random walks in random environment”, Encyclopedia of complexity and systems science, Springer, New York, NY, 2009, 7520–7533 | DOI

[103] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokoloff, “Intermittency in random media”, Phys. Usp., 30:5 (1987), 353–369 | DOI | DOI

[104] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokoloff, Intermittency, diffusion, and generation in a nonstationary random medium, Rev. Math. Math. Phys., 15, Part 1, 2nd ed., Cambridge Sci. Publ., Cambridge, 2014, 110 pp. | MR | Zbl