Functions with general monotone Fourier coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 951-1017 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a study of trigonometric series with general monotone coefficients in the class $\operatorname{GM}(p)$ with $p\geqslant 1$. Sharp estimates are proved for the Fourier coefficients of integrable and continuous functions. Also obtained are optimal results in terms of coefficients for various types of convergence of Fourier series. For $1$ two-sided estimates are obtained for the $L_p$-moduli of smoothness of sums of series with $\operatorname{GM}(p)$-coefficients, as well as for the (quasi-)norms of such sums in Lebesgue, Lorentz, Besov, and Sobolev spaces in terms of Fourier coefficients. Bibliography: 99 titles.
Keywords: functions with general monotone Fourier coefficients; estimates of Fourier coefficients; moduli of smoothness; Lebesgue, Lorentz
Mots-clés : Besov, Sobolev spaces.
@article{RM_2021_76_6_a0,
     author = {A. S. Belov and M. I. Dyachenko and S. Yu. Tikhonov},
     title = {Functions with general monotone {Fourier} coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {951--1017},
     year = {2021},
     volume = {76},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/}
}
TY  - JOUR
AU  - A. S. Belov
AU  - M. I. Dyachenko
AU  - S. Yu. Tikhonov
TI  - Functions with general monotone Fourier coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 951
EP  - 1017
VL  - 76
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/
LA  - en
ID  - RM_2021_76_6_a0
ER  - 
%0 Journal Article
%A A. S. Belov
%A M. I. Dyachenko
%A S. Yu. Tikhonov
%T Functions with general monotone Fourier coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 951-1017
%V 76
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/
%G en
%F RM_2021_76_6_a0
A. S. Belov; M. I. Dyachenko; S. Yu. Tikhonov. Functions with general monotone Fourier coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 951-1017. http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/

[1] S. Aljančić, “On the integral moduli of continuity in $L_p$ ($1 p \infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294 | DOI | MR | Zbl

[2] S. Aljančić, M. Tomić, “Über den Stetigkeitsmodul von Fourier-Reihen mit monotonen Koeffizienten”, Math. Z., 88 (1965), 274–284 | DOI | MR | Zbl

[3] R. Askey, “Smoothness conditions for Fourier series with monotone coefficients”, Acta Sci. Math. (Szeged), 28 (1967), 169–171 | MR | Zbl

[4] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[5] A. S. Belov, “Ob usloviyakh skhodimosti v srednem trigonometricheskikh ryadov Fure”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 4:1 (1998), 40–46 | MR

[6] A. S. Belov, “Ob usloviyakh skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, AFTs, M., 1999, 1–17 | MR | Zbl

[7] A. S. Belov, “Remarks on mean convergence (boundedness) of partial sums of trigonometric series”, Math. Notes, 71:6 (2002), 739–748 | DOI | DOI | MR | Zbl

[8] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[9] R. P. Boas, Jr., Integrability theorems for trigonometric transforms, Ergeb. Math. Grenzgeb., 38, Springer-Verlag New York Inc., New York, 1967, v+66 pp. | DOI | MR | Zbl

[10] R. P. Boas, Jr., “The integrability class of the sine transform of a monotonic function”, Studia Math., 44 (1972), 365–369 | DOI | MR | Zbl

[11] B. Booton, “General monotone sequences and trigonometric series”, Math. Nachr., 287:5-6 (2014), 518–529 | DOI | MR | Zbl

[12] B. Booton, “General monotone functions and their Fourier coefficients”, J. Math. Anal. Appl., 426:2 (2015), 805–823 | DOI | MR | Zbl

[13] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190 | DOI | MR | Zbl

[14] Chang-Pao Chen, Lonkey Chen, “Asymptotic behavior of trigonometric series with $O$-regularly varying quasimonotone coefficients. II”, J. Math. Anal. Appl., 245:1 (2000), 297–301 | DOI | MR | Zbl

[15] D. B. H. Cline, “Regularly varying rates of decrease for moduli of continuity and Fourier transforms of functions on $\mathbf{R}^d$”, J. Math. Anal. Appl., 159:2 (1991), 507–519 | DOI | MR | Zbl

[16] F. Dai, Z. Ditzian, S. Tikhonov, “Sharp Jackson inequalities”, J. Approx. Theory, 151:1 (2008), 86–112 | DOI | MR | Zbl

[17] A. Debernardi, “Hankel transforms of general monotone functions”, Topics in classical and modern analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 87–104 | DOI | MR | Zbl

[18] A. Debernardi, “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl., 25:6 (2019), 3310–3341 | DOI | MR | Zbl

[19] A. Debernardi, “Weighted norm inequalities for generalized Fourier-type transforms and applications”, Publ. Mat., 64:1 (2020), 3–42 | DOI | MR | Zbl

[20] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl

[21] Z. Ditzian, V. H. Hristov, K. G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0

1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl

[22] Ó. Domínguez, D. D. Haroske, S. Tikhonov, “Embeddings and characterizations of Lipschitz spaces”, J. Math. Pures Appl. (9), 144 (2020), 69–105 | DOI | MR | Zbl

[23] Ó. Domínguez, S. Tikhonov, “Function spaces of logarithmic smoothness: embeddings and characterizations”, Mem. Amer. Math. Soc. (to appear); 2018, 162 pp., arXiv: 1811.06399

[24] Ó. Domínguez, S. Tikhonov, New estimates for the maximal functions and applications, 2021, 47 pp., arXiv: 2102.04748

[25] M. I. D'yachenko, “Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood”, Math. USSR-Izv., 39:3 (1992), 1113–1128 | DOI | MR | Zbl

[26] M. I. D'yachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171 | DOI | MR | Zbl

[27] M. I. Dyachenko, “The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients”, Russian Math. (Iz. VUZ), 52:5 (2008), 32–40 | DOI | MR | Zbl

[28] M. I. Dyachenko, A. B. Mukanov, S. Yu. Tikhonov, “Smoothness of functions and Fourier coefficients”, Sb. Math., 210:7 (2019), 994–1018 | DOI | DOI | MR | Zbl

[29] M. Dyachenko, A. Mukanov, S. Tikhonov, “Uniform convergence of trigonometric series with general monotone coefficients”, Canad. J. Math., 71:6 (2019), 1445–1463 | DOI | MR | Zbl

[30] M. Dyachenko, A. Mukanov, S. Tikhonov, “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Studia Math., 250:3 (2020), 217–234 | DOI | MR | Zbl

[31] M. I. Dyachenko, E. D. Nursultanov, “Hardy–Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients”, Sb. Math., 200:11 (2009), 1617–1631 | DOI | DOI | MR | Zbl

[32] M. Dyachenko, E. Nursultanov, A. Kankenova, “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971 | DOI | MR | Zbl

[33] M. Dyachenko, S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients”, C. R. Math. Acad. Sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl

[34] M. Dyachenko, S. Tikhonov, “General monotone sequences and convergence of trigonometric series”, Topics in classical analysis and applications in honor of Daniel Waterman, World Sci. Publ., Hackensack, NJ, 2008, 88–101 | DOI | MR | Zbl

[35] M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306 | DOI | MR | Zbl

[36] M. I. Dyachenko, S. Yu. Tikhonov, “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097 | DOI | MR | Zbl

[37] Lei Feng, V. Totik, Song Ping Zhou, “Trigonometric series with a generalized monotonicity condition”, Acta Math. Sin. (Engl. Ser.), 30:8 (2014), 1289–1296 | DOI | MR | Zbl

[38] Lei Feng, Songping Zhou, “Trigonometric inequalities in the MVBV condition”, Math. Inequal. Appl., 18:2 (2015), 485–491 | DOI | MR | Zbl

[39] J. García-Cuerva, V. I. Kolyada, “Rearrangement estimates for Fourier transforms in $L^p$ and $H^p$ in terms of moduli of continuity”, Math. Nachr., 228 (2001), 123–144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[40] D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas' conjecture in $\mathbb{R}^n$”, J. Anal. Math., 114 (2011), 99–120 | DOI | MR | Zbl

[41] D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl

[42] S. M. Grigoriev, Y. Sagher, T. R. Savage, “General monotonicity and interpolation of operators”, J. Math. Anal. Appl., 435:2 (2016), 1296–1320 | DOI | MR | Zbl

[43] G. H. Hardy, “Some theorems concerning trigonometrical series of a special type”, Proc. London Math. Soc. (2), 32:6 (1931), 441–448 | DOI | MR | Zbl

[44] P. Heywood, “A note on a theorem of Hardy on trigonometrical series”, J. London Math. Soc., 29:3 (1954), 373–378 | DOI | MR | Zbl

[45] A. Jumabayeva, B. Simonov, “Inequalities for moduli of smoothness of functions and their Liouville–Weyl derivatives”, Acta Math. Hungar., 156:1 (2018), 1–17 | DOI | MR | Zbl

[46] A. A. Jumabayeva, B. V. Simonov, “Transformation of Fourier series by means of general monotone sequences”, Math. Notes, 107:5 (2020), 740–758 | DOI | DOI | MR | Zbl

[47] V. Kokilashvili, “O priblizhenii periodicheskikh funktsii”, Tr. Tbilisskogo matem. in-ta, 34 (1968), 51–81 | MR | Zbl

[48] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl

[49] B. Laković, “On a class of functions”, Mat. Vesnik, 39:4 (1987), 405–415 | MR | Zbl

[50] R. J. Le, S. P. Zhou, “A remark on ‘two-sided’ monotonicity condition: an application to $L^p$ convergence”, Acta Math. Hungar., 113:1-2 (2006), 159–169 | DOI | MR | Zbl

[51] H. Lebesgue, “Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | DOI | MR | Zbl

[52] L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285 | DOI | MR | Zbl

[53] L. Leindler, “Embedding relations of classes of numerical sequences”, Acta Sci. Math. (Szeged), 68:3-4 (2002), 689–695 | MR | Zbl

[54] L. Leindler, “Relations among Fourier coefficients and sum-functions”, Acta Math. Hungar., 104:1-2 (2004), 171–183 | DOI | MR | Zbl

[55] L. Leindler, “Generalization of embedding relations of Besov classes”, Anal. Math., 31:1 (2005), 1–12 | DOI | MR | Zbl

[56] L. Leindler, “Embedding relations of Besov classes”, Acta Sci. Math., 73:1-2 (2007), 133–149 | MR | Zbl

[57] E. Liflyand, S. Tikhonov, “Extended solution of Boas' conjecture on Fourier transforms”, C. R. Math. Acad. Sci. Paris, 346:21-22 (2008), 1137–1142 | DOI | MR | Zbl

[58] E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098 | DOI | MR | Zbl

[59] E. Liflyand, S. Tikhonov, “Two-sided weighted Fourier inequalities”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11:2 (2012), 341–362 | DOI | MR | Zbl

[60] G. G. Lorentz, “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl

[61] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | MR | Zbl | Zbl

[62] E. D. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | DOI | MR | Zbl

[63] E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl

[64] C. Oehring, “Asymptotics of singular numbers of smooth kernels via trigonometric transforms”, J. Math. Anal. Appl., 145:2 (1990), 573–605 | DOI | MR | Zbl

[65] C. Oehring, “Some extensions of Konyushkov's theorem concerning the moduli of Fourier coefficients”, Houston J. Math., 16:3 (1990), 373–386 | MR | Zbl

[66] I. N. Pak, “On the sums of trigonometric series”, Russian Math. Surveys, 35:2 (1980), 105–168 | DOI | MR | Zbl

[67] R. E. A. C. Paley, N. Wiener, “Notes on the theory and application of Fourier transforms. II. On conjugate functions”, Trans. Amer. Math. Soc., 35:2 (1933), 354–355 | DOI | MR | Zbl

[68] H. R. Pitt, “Theorems on Fourier series and power series”, Duke Math. J., 3:4 (1937), 747–755 | DOI | MR | Zbl

[69] A. Yu. Popov, “Estimates of the sums of sine series with monotone coefficients of certain classes”, Math. Notes, 74:6 (2003), 829–840 | DOI | DOI | MR | Zbl

[70] M. K. Potapov, M. Berisha, “Moduli gladkosti i koeffitsienty Fure periodicheskikh funktsii odnogo peremennogo”, Publ. Inst. Math. (Beograd) (N. S.), 26(40) (1979), 215–228 | MR | Zbl

[71] C. S. Rees, “On the integral modulus of continuity of Fourier series”, Indian J. Math., 9 (1967), 489–497 | MR | Zbl

[72] W. Rudin, “Some theorems on Fourier coefficients”, Proc. Amer. Math. Soc., 10:6 (1959), 855–859 | DOI | MR | Zbl

[73] Y. Sagher, “An application of interpolation theory to Fourier series”, Studia Math., 41:2 (1972), 169–181 | DOI | MR | Zbl

[74] Y. Sagher, “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54:1 (1976), 151–156 | DOI | MR | Zbl

[75] R. Salem, “Détermination de l'ordre de grandeur à l'origine de certaines séries trigonométriques”, C. R. Acad. Sci. Paris, 186 (1928), 1804–1806 | Zbl

[76] R. Salem, Essais sur les séries trigonométriques, Hermann et Cie., Paris, 1940, 87 pp. | MR | Zbl

[77] R. Salem, A. Zygmund, “The approximation by partial sums of Fourier series”, Trans. Amer. Math. Soc., 59:1 (1946), 14–22 | DOI | MR | Zbl

[78] S. M. Shah, “A note on quasi-monotone series”, Math. Student, 15 (1947), 19–24 | MR | Zbl

[79] H. S. Shapiro, Extremal problems for polynomials and power series, Thesis (Ph.D.), Massachusetts Institute of Technology, 1952, 102 pp. (no paging) | MR

[80] B. V. Simonov, S. Yu. Tikhonov, “Embedding theorems in constructive approximation”, Sb. Math., 199:9 (2008), 1367–1407 | DOI | DOI | MR | Zbl

[81] S. B. Stechkin, “Trigonometric series with monotone type coefficients”, Proc. Steklov Inst. Math. (Suppl.), 2001, {suppl. 1}, S214–S224 | MR | Zbl

[82] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83:2 (1956), 482–492 | DOI | MR | Zbl

[83] B. Szal, “Application of the MRBVS classes to embedding relations of the Besov classes”, Demonstratio Math., 42:2 (2009), 303–322 | DOI | MR | Zbl

[84] B. Szal, “Generalization of a theorem on Besov–Nikol'skiĭ classes”, Acta Math. Hungar., 125:1-2 (2009), 161–181 | DOI | MR | Zbl

[85] O. Szász, “Quasi-monotone series”, Amer. J. Math., 70 (1948), 203–206 | DOI | MR | Zbl

[86] S. Tikhonov, “Characteristics of Besov–Nikol'skiĭ class functions”, Electron. Trans. Numer. Anal., 19 (2005), 94–104 | MR | Zbl

[87] S. Tikhonov, Embedding theorems of function classes, IV, preprint, Centre de Recerca Matemàtica (CRM), Barcelona, Spain, 2005, 10 pp.,\par https://www.recercat.cat/bitstream/handle/2072/1475/Pr658.pdf?sequence=1 | MR | Zbl

[88] S. Yu. Tikhonov, “On the uniform convergence of trigonometric series”, Math. Notes, 81:2 (2007), 268–274 | DOI | DOI | MR | Zbl

[89] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[90] S. Tikhonov, “Trigonometric series of Nikol'skii classes”, Acta Math. Hungar., 114:1-2 (2007), 61–78 | DOI | MR | Zbl

[91] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl

[92] S. Tikhonov, “On $L_1$-convergence of Fourier series”, J. Math. Anal. Appl., 347:2 (2008), 416–427 | DOI | MR | Zbl

[93] S. Yu. Tikhonov, “Weighted Fourier inequalities and boundedness of variation”, Proc. Steklov Inst. Math., 312 (2021), 282–300 | DOI | DOI | MR | Zbl

[94] D. Torres-Latorre, “Functions preserving general monotone sequences”, Anal. Math., 47:1 (2021), 211–227 | DOI | MR | Zbl

[95] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1983, x+285 pp. | DOI | MR | MR | Zbl | Zbl

[96] Kunyang Wang, S. A. Teljakovskij, “Differential properties of sums of trigonometric series of a certain class”, Moscow Univ. Math. Bull., 54:1 (1999), 26–30 | MR | Zbl

[97] Dansheng Yu, Ping Zhou, Songping Zhou, “On $L^p$ integrability and convergence of trigonometric series”, Studia Math., 182:3 (2007), 215–226 | DOI | MR | Zbl

[98] A. Zygmund, “Some points in the theory of trigonometric and power series”, Trans. Amer. Math. Soc., 36:3 (1934), 586–617 | DOI | MR | Zbl

[99] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl