Mots-clés : Besov, Sobolev spaces.
@article{RM_2021_76_6_a0,
author = {A. S. Belov and M. I. Dyachenko and S. Yu. Tikhonov},
title = {Functions with general monotone {Fourier} coefficients},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {951--1017},
year = {2021},
volume = {76},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/}
}
TY - JOUR AU - A. S. Belov AU - M. I. Dyachenko AU - S. Yu. Tikhonov TI - Functions with general monotone Fourier coefficients JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 951 EP - 1017 VL - 76 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/ LA - en ID - RM_2021_76_6_a0 ER -
A. S. Belov; M. I. Dyachenko; S. Yu. Tikhonov. Functions with general monotone Fourier coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 951-1017. http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/
[1] S. Aljančić, “On the integral moduli of continuity in $L_p$ ($1 p \infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294 | DOI | MR | Zbl
[2] S. Aljančić, M. Tomić, “Über den Stetigkeitsmodul von Fourier-Reihen mit monotonen Koeffizienten”, Math. Z., 88 (1965), 274–284 | DOI | MR | Zbl
[3] R. Askey, “Smoothness conditions for Fourier series with monotone coefficients”, Acta Sci. Math. (Szeged), 28 (1967), 169–171 | MR | Zbl
[4] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[5] A. S. Belov, “Ob usloviyakh skhodimosti v srednem trigonometricheskikh ryadov Fure”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 4:1 (1998), 40–46 | MR
[6] A. S. Belov, “Ob usloviyakh skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, AFTs, M., 1999, 1–17 | MR | Zbl
[7] A. S. Belov, “Remarks on mean convergence (boundedness) of partial sums of trigonometric series”, Math. Notes, 71:6 (2002), 739–748 | DOI | DOI | MR | Zbl
[8] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[9] R. P. Boas, Jr., Integrability theorems for trigonometric transforms, Ergeb. Math. Grenzgeb., 38, Springer-Verlag New York Inc., New York, 1967, v+66 pp. | DOI | MR | Zbl
[10] R. P. Boas, Jr., “The integrability class of the sine transform of a monotonic function”, Studia Math., 44 (1972), 365–369 | DOI | MR | Zbl
[11] B. Booton, “General monotone sequences and trigonometric series”, Math. Nachr., 287:5-6 (2014), 518–529 | DOI | MR | Zbl
[12] B. Booton, “General monotone functions and their Fourier coefficients”, J. Math. Anal. Appl., 426:2 (2015), 805–823 | DOI | MR | Zbl
[13] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190 | DOI | MR | Zbl
[14] Chang-Pao Chen, Lonkey Chen, “Asymptotic behavior of trigonometric series with $O$-regularly varying quasimonotone coefficients. II”, J. Math. Anal. Appl., 245:1 (2000), 297–301 | DOI | MR | Zbl
[15] D. B. H. Cline, “Regularly varying rates of decrease for moduli of continuity and Fourier transforms of functions on $\mathbf{R}^d$”, J. Math. Anal. Appl., 159:2 (1991), 507–519 | DOI | MR | Zbl
[16] F. Dai, Z. Ditzian, S. Tikhonov, “Sharp Jackson inequalities”, J. Approx. Theory, 151:1 (2008), 86–112 | DOI | MR | Zbl
[17] A. Debernardi, “Hankel transforms of general monotone functions”, Topics in classical and modern analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 87–104 | DOI | MR | Zbl
[18] A. Debernardi, “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl., 25:6 (2019), 3310–3341 | DOI | MR | Zbl
[19] A. Debernardi, “Weighted norm inequalities for generalized Fourier-type transforms and applications”, Publ. Mat., 64:1 (2020), 3–42 | DOI | MR | Zbl
[20] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl
[21] Z. Ditzian, V. H. Hristov, K. G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl[22] Ó. Domínguez, D. D. Haroske, S. Tikhonov, “Embeddings and characterizations of Lipschitz spaces”, J. Math. Pures Appl. (9), 144 (2020), 69–105 | DOI | MR | Zbl
[23] Ó. Domínguez, S. Tikhonov, “Function spaces of logarithmic smoothness: embeddings and characterizations”, Mem. Amer. Math. Soc. (to appear); 2018, 162 pp., arXiv: 1811.06399
[24] Ó. Domínguez, S. Tikhonov, New estimates for the maximal functions and applications, 2021, 47 pp., arXiv: 2102.04748
[25] M. I. D'yachenko, “Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood”, Math. USSR-Izv., 39:3 (1992), 1113–1128 | DOI | MR | Zbl
[26] M. I. D'yachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171 | DOI | MR | Zbl
[27] M. I. Dyachenko, “The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients”, Russian Math. (Iz. VUZ), 52:5 (2008), 32–40 | DOI | MR | Zbl
[28] M. I. Dyachenko, A. B. Mukanov, S. Yu. Tikhonov, “Smoothness of functions and Fourier coefficients”, Sb. Math., 210:7 (2019), 994–1018 | DOI | DOI | MR | Zbl
[29] M. Dyachenko, A. Mukanov, S. Tikhonov, “Uniform convergence of trigonometric series with general monotone coefficients”, Canad. J. Math., 71:6 (2019), 1445–1463 | DOI | MR | Zbl
[30] M. Dyachenko, A. Mukanov, S. Tikhonov, “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Studia Math., 250:3 (2020), 217–234 | DOI | MR | Zbl
[31] M. I. Dyachenko, E. D. Nursultanov, “Hardy–Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients”, Sb. Math., 200:11 (2009), 1617–1631 | DOI | DOI | MR | Zbl
[32] M. Dyachenko, E. Nursultanov, A. Kankenova, “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971 | DOI | MR | Zbl
[33] M. Dyachenko, S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients”, C. R. Math. Acad. Sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl
[34] M. Dyachenko, S. Tikhonov, “General monotone sequences and convergence of trigonometric series”, Topics in classical analysis and applications in honor of Daniel Waterman, World Sci. Publ., Hackensack, NJ, 2008, 88–101 | DOI | MR | Zbl
[35] M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306 | DOI | MR | Zbl
[36] M. I. Dyachenko, S. Yu. Tikhonov, “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097 | DOI | MR | Zbl
[37] Lei Feng, V. Totik, Song Ping Zhou, “Trigonometric series with a generalized monotonicity condition”, Acta Math. Sin. (Engl. Ser.), 30:8 (2014), 1289–1296 | DOI | MR | Zbl
[38] Lei Feng, Songping Zhou, “Trigonometric inequalities in the MVBV condition”, Math. Inequal. Appl., 18:2 (2015), 485–491 | DOI | MR | Zbl
[39] J. García-Cuerva, V. I. Kolyada, “Rearrangement estimates for Fourier transforms in $L^p$ and $H^p$ in terms of moduli of continuity”, Math. Nachr., 228 (2001), 123–144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[40] D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas' conjecture in $\mathbb{R}^n$”, J. Anal. Math., 114 (2011), 99–120 | DOI | MR | Zbl
[41] D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl
[42] S. M. Grigoriev, Y. Sagher, T. R. Savage, “General monotonicity and interpolation of operators”, J. Math. Anal. Appl., 435:2 (2016), 1296–1320 | DOI | MR | Zbl
[43] G. H. Hardy, “Some theorems concerning trigonometrical series of a special type”, Proc. London Math. Soc. (2), 32:6 (1931), 441–448 | DOI | MR | Zbl
[44] P. Heywood, “A note on a theorem of Hardy on trigonometrical series”, J. London Math. Soc., 29:3 (1954), 373–378 | DOI | MR | Zbl
[45] A. Jumabayeva, B. Simonov, “Inequalities for moduli of smoothness of functions and their Liouville–Weyl derivatives”, Acta Math. Hungar., 156:1 (2018), 1–17 | DOI | MR | Zbl
[46] A. A. Jumabayeva, B. V. Simonov, “Transformation of Fourier series by means of general monotone sequences”, Math. Notes, 107:5 (2020), 740–758 | DOI | DOI | MR | Zbl
[47] V. Kokilashvili, “O priblizhenii periodicheskikh funktsii”, Tr. Tbilisskogo matem. in-ta, 34 (1968), 51–81 | MR | Zbl
[48] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl
[49] B. Laković, “On a class of functions”, Mat. Vesnik, 39:4 (1987), 405–415 | MR | Zbl
[50] R. J. Le, S. P. Zhou, “A remark on ‘two-sided’ monotonicity condition: an application to $L^p$ convergence”, Acta Math. Hungar., 113:1-2 (2006), 159–169 | DOI | MR | Zbl
[51] H. Lebesgue, “Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | DOI | MR | Zbl
[52] L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285 | DOI | MR | Zbl
[53] L. Leindler, “Embedding relations of classes of numerical sequences”, Acta Sci. Math. (Szeged), 68:3-4 (2002), 689–695 | MR | Zbl
[54] L. Leindler, “Relations among Fourier coefficients and sum-functions”, Acta Math. Hungar., 104:1-2 (2004), 171–183 | DOI | MR | Zbl
[55] L. Leindler, “Generalization of embedding relations of Besov classes”, Anal. Math., 31:1 (2005), 1–12 | DOI | MR | Zbl
[56] L. Leindler, “Embedding relations of Besov classes”, Acta Sci. Math., 73:1-2 (2007), 133–149 | MR | Zbl
[57] E. Liflyand, S. Tikhonov, “Extended solution of Boas' conjecture on Fourier transforms”, C. R. Math. Acad. Sci. Paris, 346:21-22 (2008), 1137–1142 | DOI | MR | Zbl
[58] E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098 | DOI | MR | Zbl
[59] E. Liflyand, S. Tikhonov, “Two-sided weighted Fourier inequalities”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11:2 (2012), 341–362 | DOI | MR | Zbl
[60] G. G. Lorentz, “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl
[61] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | MR | Zbl | Zbl
[62] E. D. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | DOI | MR | Zbl
[63] E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl
[64] C. Oehring, “Asymptotics of singular numbers of smooth kernels via trigonometric transforms”, J. Math. Anal. Appl., 145:2 (1990), 573–605 | DOI | MR | Zbl
[65] C. Oehring, “Some extensions of Konyushkov's theorem concerning the moduli of Fourier coefficients”, Houston J. Math., 16:3 (1990), 373–386 | MR | Zbl
[66] I. N. Pak, “On the sums of trigonometric series”, Russian Math. Surveys, 35:2 (1980), 105–168 | DOI | MR | Zbl
[67] R. E. A. C. Paley, N. Wiener, “Notes on the theory and application of Fourier transforms. II. On conjugate functions”, Trans. Amer. Math. Soc., 35:2 (1933), 354–355 | DOI | MR | Zbl
[68] H. R. Pitt, “Theorems on Fourier series and power series”, Duke Math. J., 3:4 (1937), 747–755 | DOI | MR | Zbl
[69] A. Yu. Popov, “Estimates of the sums of sine series with monotone coefficients of certain classes”, Math. Notes, 74:6 (2003), 829–840 | DOI | DOI | MR | Zbl
[70] M. K. Potapov, M. Berisha, “Moduli gladkosti i koeffitsienty Fure periodicheskikh funktsii odnogo peremennogo”, Publ. Inst. Math. (Beograd) (N. S.), 26(40) (1979), 215–228 | MR | Zbl
[71] C. S. Rees, “On the integral modulus of continuity of Fourier series”, Indian J. Math., 9 (1967), 489–497 | MR | Zbl
[72] W. Rudin, “Some theorems on Fourier coefficients”, Proc. Amer. Math. Soc., 10:6 (1959), 855–859 | DOI | MR | Zbl
[73] Y. Sagher, “An application of interpolation theory to Fourier series”, Studia Math., 41:2 (1972), 169–181 | DOI | MR | Zbl
[74] Y. Sagher, “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54:1 (1976), 151–156 | DOI | MR | Zbl
[75] R. Salem, “Détermination de l'ordre de grandeur à l'origine de certaines séries trigonométriques”, C. R. Acad. Sci. Paris, 186 (1928), 1804–1806 | Zbl
[76] R. Salem, Essais sur les séries trigonométriques, Hermann et Cie., Paris, 1940, 87 pp. | MR | Zbl
[77] R. Salem, A. Zygmund, “The approximation by partial sums of Fourier series”, Trans. Amer. Math. Soc., 59:1 (1946), 14–22 | DOI | MR | Zbl
[78] S. M. Shah, “A note on quasi-monotone series”, Math. Student, 15 (1947), 19–24 | MR | Zbl
[79] H. S. Shapiro, Extremal problems for polynomials and power series, Thesis (Ph.D.), Massachusetts Institute of Technology, 1952, 102 pp. (no paging) | MR
[80] B. V. Simonov, S. Yu. Tikhonov, “Embedding theorems in constructive approximation”, Sb. Math., 199:9 (2008), 1367–1407 | DOI | DOI | MR | Zbl
[81] S. B. Stechkin, “Trigonometric series with monotone type coefficients”, Proc. Steklov Inst. Math. (Suppl.), 2001, {suppl. 1}, S214–S224 | MR | Zbl
[82] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83:2 (1956), 482–492 | DOI | MR | Zbl
[83] B. Szal, “Application of the MRBVS classes to embedding relations of the Besov classes”, Demonstratio Math., 42:2 (2009), 303–322 | DOI | MR | Zbl
[84] B. Szal, “Generalization of a theorem on Besov–Nikol'skiĭ classes”, Acta Math. Hungar., 125:1-2 (2009), 161–181 | DOI | MR | Zbl
[85] O. Szász, “Quasi-monotone series”, Amer. J. Math., 70 (1948), 203–206 | DOI | MR | Zbl
[86] S. Tikhonov, “Characteristics of Besov–Nikol'skiĭ class functions”, Electron. Trans. Numer. Anal., 19 (2005), 94–104 | MR | Zbl
[87] S. Tikhonov, Embedding theorems of function classes, IV, preprint, Centre de Recerca Matemàtica (CRM), Barcelona, Spain, 2005, 10 pp.,\par https://www.recercat.cat/bitstream/handle/2072/1475/Pr658.pdf?sequence=1 | MR | Zbl
[88] S. Yu. Tikhonov, “On the uniform convergence of trigonometric series”, Math. Notes, 81:2 (2007), 268–274 | DOI | DOI | MR | Zbl
[89] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl
[90] S. Tikhonov, “Trigonometric series of Nikol'skii classes”, Acta Math. Hungar., 114:1-2 (2007), 61–78 | DOI | MR | Zbl
[91] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl
[92] S. Tikhonov, “On $L_1$-convergence of Fourier series”, J. Math. Anal. Appl., 347:2 (2008), 416–427 | DOI | MR | Zbl
[93] S. Yu. Tikhonov, “Weighted Fourier inequalities and boundedness of variation”, Proc. Steklov Inst. Math., 312 (2021), 282–300 | DOI | DOI | MR | Zbl
[94] D. Torres-Latorre, “Functions preserving general monotone sequences”, Anal. Math., 47:1 (2021), 211–227 | DOI | MR | Zbl
[95] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1983, x+285 pp. | DOI | MR | MR | Zbl | Zbl
[96] Kunyang Wang, S. A. Teljakovskij, “Differential properties of sums of trigonometric series of a certain class”, Moscow Univ. Math. Bull., 54:1 (1999), 26–30 | MR | Zbl
[97] Dansheng Yu, Ping Zhou, Songping Zhou, “On $L^p$ integrability and convergence of trigonometric series”, Studia Math., 182:3 (2007), 215–226 | DOI | MR | Zbl
[98] A. Zygmund, “Some points in the theory of trigonometric and power series”, Trans. Amer. Math. Soc., 36:3 (1934), 586–617 | DOI | MR | Zbl
[99] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl