Functions with general monotone Fourier coefficients
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 951-1017
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is a study of trigonometric series with general monotone coefficients in the class $\operatorname{GM}(p)$ with $p\geqslant 1$. Sharp estimates are proved for the Fourier coefficients of integrable and continuous functions. Also obtained are optimal results in terms of coefficients for various types of convergence of Fourier series. For $1$ two-sided estimates are obtained for the $L_p$-moduli of smoothness of sums of series with $\operatorname{GM}(p)$-coefficients, as well as for the (quasi-)norms of such sums in Lebesgue, Lorentz, Besov, and Sobolev spaces in terms of Fourier coefficients.
Bibliography: 99 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
functions with general monotone Fourier coefficients; estimates of Fourier coefficients; moduli of smoothness; Lebesgue, Lorentz
Mots-clés : Besov, Sobolev spaces.
                    
                  
                
                
                Mots-clés : Besov, Sobolev spaces.
@article{RM_2021_76_6_a0,
     author = {A. S. Belov and M. I. Dyachenko and S. Yu. Tikhonov},
     title = {Functions with general monotone {Fourier} coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {951--1017},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/}
}
                      
                      
                    TY - JOUR AU - A. S. Belov AU - M. I. Dyachenko AU - S. Yu. Tikhonov TI - Functions with general monotone Fourier coefficients JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 951 EP - 1017 VL - 76 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/ LA - en ID - RM_2021_76_6_a0 ER -
%0 Journal Article %A A. S. Belov %A M. I. Dyachenko %A S. Yu. Tikhonov %T Functions with general monotone Fourier coefficients %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 951-1017 %V 76 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/ %G en %F RM_2021_76_6_a0
A. S. Belov; M. I. Dyachenko; S. Yu. Tikhonov. Functions with general monotone Fourier coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 6, pp. 951-1017. http://geodesic.mathdoc.fr/item/RM_2021_76_6_a0/