Lower bounds for $m$-term approximations in the metric of the discrete space $L_n^0$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 5, pp. 933-935 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2021_76_5_a4,
     author = {B. S. Kashin},
     title = {Lower bounds for $m$-term approximations in the metric of the discrete space~$L_n^0$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {933--935},
     year = {2021},
     volume = {76},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_5_a4/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - Lower bounds for $m$-term approximations in the metric of the discrete space $L_n^0$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 933
EP  - 935
VL  - 76
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_5_a4/
LA  - en
ID  - RM_2021_76_5_a4
ER  - 
%0 Journal Article
%A B. S. Kashin
%T Lower bounds for $m$-term approximations in the metric of the discrete space $L_n^0$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 933-935
%V 76
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2021_76_5_a4/
%G en
%F RM_2021_76_5_a4
B. S. Kashin. Lower bounds for $m$-term approximations in the metric of the discrete space $L_n^0$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 5, pp. 933-935. http://geodesic.mathdoc.fr/item/RM_2021_76_5_a4/

[1] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp. | DOI | MR | Zbl

[2] B. S. Kashin, Tr. MIAN SSSR, 172, 1985, 187–191 | MR | Zbl

[3] B. S. Kashin, V. N. Temlyakov, Matem. zametki, 56:5 (1994), 57–86 | DOI | MR | Zbl

[4] Yu. Malykhin, Matrix and tensor rigidity and $L_p$-approximation, 2020, 16 pp., arXiv: 2010.14801

[5] Yu. Malykhin, Rigidity in $L_p$ and independence, preprint, 2021

[6] J. Alman, R. Williams, STOC'17 Proceedings of the 49th annual ACM SIGACT symposium on theory of computing (Montreal, QC, 2017), ACM, New York, 2017, 641–652 | DOI | MR | Zbl