One-dimensional dynamical systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 5, pp. 821-881

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is devoted to the topological dynamics of maps defined on one-dimensional continua such as a closed interval, a circle, finite graphs (for instance, finite trees), or dendrites (locally connected continua without subsets homeomorphic to a circle). Connections between the periodic behaviour of trajectories, the existence of a horseshoe and homoclinic trajectories, and the positivity of topological entropy are investigated. Necessary and sufficient conditions for entropy chaos in continuous maps of an interval, a circle, or a finite graph, and sufficient conditions for entropy chaos in continuous maps of dendrites are presented. Reasons for similarities and differences between the properties of maps defined on the continua under consideration are analyzed. Extensions of Sharkovsky's theorem to certain discontinuous maps of a line or an interval and continuous maps on a plane are considered. Bibliography: 207 titles.
Keywords: one-dimensional continuum, degree of a circle map, finite graph, periodic point, horseshoe, topological entropy.
Mots-clés : rotation set, dendrite, homoclinic point
@article{RM_2021_76_5_a1,
     author = {L. S. Efremova and E. N. Makhrova},
     title = {One-dimensional dynamical systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {821--881},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_5_a1/}
}
TY  - JOUR
AU  - L. S. Efremova
AU  - E. N. Makhrova
TI  - One-dimensional dynamical systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 821
EP  - 881
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_5_a1/
LA  - en
ID  - RM_2021_76_5_a1
ER  - 
%0 Journal Article
%A L. S. Efremova
%A E. N. Makhrova
%T One-dimensional dynamical systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 821-881
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2021_76_5_a1/
%G en
%F RM_2021_76_5_a1
L. S. Efremova; E. N. Makhrova. One-dimensional dynamical systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 5, pp. 821-881. http://geodesic.mathdoc.fr/item/RM_2021_76_5_a1/