Multipoint formulae for inverse scattering at high energies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 723-725 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2021_76_4_a4,
     author = {R. G. Novikov},
     title = {Multipoint formulae for inverse scattering at high energies},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {723--725},
     year = {2021},
     volume = {76},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_4_a4/}
}
TY  - JOUR
AU  - R. G. Novikov
TI  - Multipoint formulae for inverse scattering at high energies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 723
EP  - 725
VL  - 76
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_4_a4/
LA  - en
ID  - RM_2021_76_4_a4
ER  - 
%0 Journal Article
%A R. G. Novikov
%T Multipoint formulae for inverse scattering at high energies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 723-725
%V 76
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2021_76_4_a4/
%G en
%F RM_2021_76_4_a4
R. G. Novikov. Multipoint formulae for inverse scattering at high energies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 723-725. http://geodesic.mathdoc.fr/item/RM_2021_76_4_a4/

[1] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Acad. Publ., Dordrecht, 1991, xviii+555 pp. | DOI | MR | MR | Zbl | Zbl

[2] R. B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press, Cambridge, 1995, xii+116 pp. | MR | Zbl

[3] R. Novikov, “Multidimensional inverse scattering for the Schrödinger equation”, Mathematical analysis, its applications and computation – ISAAC (Aveiro, 2019), Springer Proc. Math. Stat., Springer, Cham (to appear); 2020, 22 pp. https://hal.archives-ouvertes.fr/hal-02465839v1

[4] R. G. Novikov, “Multipoint formulas for scattered far field in multidimensions”, Inverse Problems, 36:9 (2020), 095001, 12 pp. | DOI | MR | Zbl