Multipoint formulae for inverse scattering at high energies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 723-725
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2021_76_4_a4,
author = {R. G. Novikov},
title = {Multipoint formulae for inverse scattering at high energies},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {723--725},
year = {2021},
volume = {76},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_4_a4/}
}
R. G. Novikov. Multipoint formulae for inverse scattering at high energies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 723-725. http://geodesic.mathdoc.fr/item/RM_2021_76_4_a4/
[1] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Acad. Publ., Dordrecht, 1991, xviii+555 pp. | DOI | MR | MR | Zbl | Zbl
[2] R. B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press, Cambridge, 1995, xii+116 pp. | MR | Zbl
[3] R. Novikov, “Multidimensional inverse scattering for the Schrödinger equation”, Mathematical analysis, its applications and computation – ISAAC (Aveiro, 2019), Springer Proc. Math. Stat., Springer, Cham (to appear); 2020, 22 pp. https://hal.archives-ouvertes.fr/hal-02465839v1
[4] R. G. Novikov, “Multipoint formulas for scattered far field in multidimensions”, Inverse Problems, 36:9 (2020), 095001, 12 pp. | DOI | MR | Zbl