Dynamical $\mathfrak{sl}_2$ Bethe algebra and functions on pairs of quasi-polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 653-684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the space $\operatorname{Fun}_{\mathfrak{sl}_2}V[0]$ of functions on the Cartan subalgebra of $\mathfrak{sl}_2$ with values in the zero weight subspace $V[0]$ of a tensor product of irreducible finite-dimensional $\mathfrak{sl}_2$-modules. We consider the algebra $\mathcal B$ of commuting differential operators on $\operatorname{Fun}_{\mathfrak{sl}_2}V[0]$, constructed by Rubtsov, Silantyev, and Talalaev in 2009. We describe the relations between the action of $\mathcal B$ on $\operatorname{Fun}_{\mathfrak{sl}_2}V[0]$ and spaces of pairs of quasi-polynomials. Bibliography: 25 titles.
Keywords: commuting differential operators, eigenfunctions, Weyl group invariance, Bethe Ansatz, Wronskian equation
Mots-clés : quasi-polynomials.
@article{RM_2021_76_4_a2,
     author = {A. N. Varchenko and A. M. Slinkin and D. Thompson},
     title = {Dynamical $\mathfrak{sl}_2$ {Bethe} algebra and functions on pairs of quasi-polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {653--684},
     year = {2021},
     volume = {76},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_4_a2/}
}
TY  - JOUR
AU  - A. N. Varchenko
AU  - A. M. Slinkin
AU  - D. Thompson
TI  - Dynamical $\mathfrak{sl}_2$ Bethe algebra and functions on pairs of quasi-polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 653
EP  - 684
VL  - 76
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_4_a2/
LA  - en
ID  - RM_2021_76_4_a2
ER  - 
%0 Journal Article
%A A. N. Varchenko
%A A. M. Slinkin
%A D. Thompson
%T Dynamical $\mathfrak{sl}_2$ Bethe algebra and functions on pairs of quasi-polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 653-684
%V 76
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2021_76_4_a2/
%G en
%F RM_2021_76_4_a2
A. N. Varchenko; A. M. Slinkin; D. Thompson. Dynamical $\mathfrak{sl}_2$ Bethe algebra and functions on pairs of quasi-polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 653-684. http://geodesic.mathdoc.fr/item/RM_2021_76_4_a2/

[1] I. V. Cherednik, “Generalized braid groups and local $r$-matrix systems”, Dokl. Math., 40:1 (1990), 43–48 | MR | Zbl

[2] P. Etingof, E. Frenkel, D. Kazhdan, Hecke operators and analytic Langlands correspondence for curves over local fields, 2021, 38 pp., arXiv: 2103.01509

[3] P. I. Etingof, I. B. Frenkel, A. A. Kirillov, Jr., Lectures on representation theory and Knizhnik–Zamolodchikov equations, Math. Surveys Monogr., 58, Amer. Math. Soc., Providence, RI, 1998, xiv+198 pp. | DOI | MR | Zbl

[4] P. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127 | DOI | MR | Zbl

[5] G. Felder, A. Varchenko, “Integral representation of solutions of the elliptic Knizhnik–Zamolodchikov–Bernard equations”, Int. Math. Res. Not. IMRN, 1995:5 (1995), 221–233 | DOI | MR | Zbl

[6] G. Felder, A. Varchenko, “Three formulas for eigenfunctions of integrable Schrödinger operators”, Compos. Math., 107:2 (1997), 143–175 | DOI | MR | Zbl

[7] G. Felder, C. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161 | DOI | MR | Zbl

[8] E. Jensen, A. Varchenko, “Norms of eigenfunctions of trigonometric KZB operators”, Int. Math. Res. Not. IMRN, 2013:6 (2013), 1230–1267 | DOI | MR | Zbl

[9] M. Kontsevich, “Notes on motives in finite characteristic”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009, 213–247 | DOI | MR | Zbl

[10] Y. Markov, A. Varchenko, “Hypergeometric solutions of trigonometric KZ equations satisfy dynamical difference equations”, Adv. Math., 166:1 (2002), 100–147 | DOI | MR | Zbl

[11] E. Mukhin, V. Tarasov, A. Varchenko, “Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel”, SIGMA, 3 (2007), 060, 31 pp. | DOI | MR | Zbl

[12] E. Mukhin, V. Tarasov, A. Varchenko, “Spaces of quasi-exponentials and representations of $\mathfrak{gl}_N$”, J. Phys. A, 41:19 (2008), 194017, 28 pp. | DOI | MR | Zbl

[13] E. Mukhin, V. Tarasov, A. Varchenko, “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22:4 (2009), 909–940 | DOI | MR | Zbl

[14] E. Mukhin, V. Tarasov, A. Varchenko, “On reality property of Wronski maps”, Confluentes Math., 1:2 (2009), 225–247 | DOI | MR | Zbl

[15] E. Mukhin, V. Tarasov, A. Varchenko, “The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz”, Ann. of Math. (2), 170:2 (2009), 863–881 | DOI | MR | Zbl

[16] E. Mukhin, V. Tarasov, A. Varchenko, “Bethe algebra of the $\frak{gl}_{N+1}$ Gaudin model and algebra of functions on the critical set of the master function”, New trends in quantum integrable systems, World Sci. Publ., Hackensack, NJ, 2011, 307–324 | DOI | MR | Zbl

[17] E. Mukhin, A. Varchenko, “Norm of a Bethe vector and the Hessian of the master function”, Compos. Math., 141:4 (2005), 1012–1028 | DOI | MR | Zbl

[18] E. Mukhin, A. Varchenko, “Quasi-polynomials and the Bethe ansatz”, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry, 2008, 385–420 | DOI | MR | Zbl

[19] N. Reshetikhin, A. Varchenko, “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, topology physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 293–322 | MR | Zbl

[20] V. Rubtsov, A. Silantyev, D. Talalaev, “Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model”, SIGMA, 5 (2009), 110, 22 pp. | DOI | MR | Zbl

[21] V. V. Schechtman, A. N. Varchenko, “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106:1 (1991), 139–194 | DOI | MR | Zbl

[22] I. Scherbak, A. Varchenko, “Critical points of functions, $\mathfrak{sl}_2$ representations, and Fuchsian differential equations with only univalued solutions”, Mosc. Math. J., 3:2 (2003), 621–645 | DOI | MR | Zbl

[23] V. Tarasov, A. Varchenko, “Difference equations compatible with trigonometric KZ differential equations”, Int. Math. Res. Not. IMRN, 2000:15 (2000), 801–829 | DOI | MR | Zbl

[24] D. Thompson, A. Varchenko, “Dynamical elliptic Bethe algebra, KZB eigenfunctions, and theta-polynomials”, LiMS, 1:1 (2019), 78–125

[25] A. Varchenko, “Quantum integrable model of an arrangement of hyperplanes”, SIGMA, 7 (2011), 032, 55 pp. | DOI | MR | Zbl