Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 587-652 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to integrable polynomial Hamiltonian systems associated with symmetric powers of plane algebraic curves. We focus our attention on the relations (discovered by the authors) between the Stäckel systems, Novikov's equations for the $g$th stationary Korteweg–de Vries hierarchy, the Dubrovin–Novikov coordinates on the universal bundle of Jacobians of hyperelliptic curves, and new systems obtained by considering the symmetric powers of curves when the power is not equal to the genus of the curve. Bibliography: 52 titles.
Keywords: polynomial Hamiltonian systems, Stäckel systems, Korteweg–de Vries hierarchy, symmetric powers of curves, Abelian functions, systems of hydrodynamical type.
@article{RM_2021_76_4_a1,
     author = {V. M. Buchstaber and A. V. Mikhailov},
     title = {Integrable polynomial {Hamiltonian} systems and symmetric powers of plane algebraic curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {587--652},
     year = {2021},
     volume = {76},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. V. Mikhailov
TI  - Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 587
EP  - 652
VL  - 76
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/
LA  - en
ID  - RM_2021_76_4_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. V. Mikhailov
%T Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 587-652
%V 76
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/
%G en
%F RM_2021_76_4_a1
V. M. Buchstaber; A. V. Mikhailov. Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 587-652. http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/

[1] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl

[2] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, Ergeb. Math. Grenzgeb. (3), 47, Springer-Verlag, Berlin, 2004, xii+483 pp. | DOI | MR | Zbl

[3] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | DOI | MR | MR | Zbl | Zbl

[4] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[5] M. Błaszak, Wen-Xiu Ma, “Separable Hamiltonian equations on Riemann manifolds and related integrable hydrodynamic systems”, J. Geom. Phys., 47:1 (2003), 21–42 | DOI | MR | Zbl

[6] V. M. Buchstaber, “Multidimensional sigma functions and applications”, in “Victor Enolski (1945–2019)” by E. Previato, Notices Amer. Math. Soc., 67:11 (2020), 1756–1760 | DOI | MR | Zbl

[7] V. M. Buchstaber, V. Z. Enolskiĭ, D. V. Leĭkin, “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 1–33 | DOI | MR | Zbl

[8] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10, Part 2, Gordon and Breach, London, 1997, 3–120 | Zbl

[9] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions, 2012, 267 pp., arXiv: 1208.0990

[10] V. M. Bukhshtaber, D. V. Leĭkin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl

[11] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Rational analogs of Abelian functions”, Funct. Anal. Appl., 33:2 (1999), 83–94 | DOI | DOI | MR | Zbl

[12] V. M. Buchstaber, A. V. Mikhailov, “Polynomial Hamiltonian integrable systems on symmetric powers of plane curves”, Russian Math. Surveys, 73:6 (2018), 1122–1124 | DOI | DOI | MR | Zbl

[13] V. M. Buchstaber, E. G. Rees, “The Gelfand map and symmetric products”, Selecta Math. (N. S.), 8:4 (2002), 523–535 | DOI | MR | Zbl

[14] V. M. Buchstaber, E. G. Rees, “Frobenius $n$-homomorphisms, transfers and branched coverings”, Math. Proc. Cambridge Philos. Soc., 144:1 (2008), 1–12 ; (2006), 15 pp., arXiv: math/0608120 | DOI | MR | Zbl

[15] V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 41–66 | DOI | MR | Zbl

[16] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc. (2), 21:1 (1923), 420–440 | DOI | MR | Zbl

[17] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. R. Soc. Lond. Ser. A, 118:780 (1928), 557–583 | DOI | Zbl

[18] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl

[19] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 1990, 173–280 | DOI | MR | MR | Zbl | Zbl

[20] B. A. Dubrovin, S. P. Novikov, “A periodicity problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry”, Soviet Math. Dokl., 15 (1974), 1597–1601 | MR | Zbl

[21] B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124 | DOI | MR | Zbl

[22] G. Ellingsrud, S. A. Strømme, “On the homology of the Hilbert scheme of points in the plane”, Invent. Math., 87:2 (1987), 343–352 | DOI | MR | Zbl

[23] E. V. Ferapontov, “Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by methods of the theory of webs”, Math. USSR-Sb., 71:1 (1992), 65–79 | DOI | MR | Zbl

[24] E. V. Ferapontov, “Equations of hydrodynamic type from the point of view of the theory of webs”, Math. Notes, 50:5 (1991), 1162–1170 | DOI | MR | Zbl

[25] E. V. Ferapontov, A. P. Fordy, “Separable Hamiltonians and integrable systems of hydrodynamic type”, J. Geom. Phys., 21:2 (1997), 169–182 | DOI | MR | Zbl

[26] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | Zbl

[27] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl

[28] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[29] F. Klein, “Über Hyperelliptische Sigmafunktionen. (Zweiter Aufsatz)”, Gesammelte Mathematische Abhandlungen, v. 3, J. Springer, Berlin, 1923, 323–357 | Zbl

[30] D. J. Korteweg, D. de Vries, “On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves”, Philos. Mag. (5), 39:240 (1895), 422–443 | DOI | MR | Zbl

[31] V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140 | DOI | DOI | MR | Zbl

[32] V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494 | DOI | DOI | MR | Zbl

[33] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl

[34] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp. | MR | MR | Zbl

[35] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[36] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, New York, 1995, x+475 pp. | MR | MR | Zbl | Zbl

[37] A. V. Mikhailov, “Quantisation ideals of nonabelian integrable systems”, Russian Math. Surveys, 75:5 (2020), 978–980 | DOI | DOI | MR | Zbl

[38] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[39] A. V. Mikhailov, V. V. Sokolov, “Integrable ODEs on associative algebras”, Comm. Math. Phys., 211:1 (2000), 231–251 | DOI | MR | Zbl

[40] O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622 | DOI | DOI | MR | Zbl

[41] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988, 448 pp.; D. Mumford, Tata lectures on theta, С‚. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 СЃ. ; v. II, 43, 1984, xiv+272 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[42] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[43] S. Novikov, “Rôle of integrable models in the development of mathematics”, Mathematical research today and tomorrow (Barcelona, 1991), Lecture Notes in Math., 1525, Springer, Berlin, 1992, 13–28 | DOI | MR | Zbl

[44] P. J. Olver, Jing Ping Wang, “Classification of integrable one-component systems on associative algebras”, Proc. London Math. Soc. (3), 81:3 (2000), 566–586 | DOI | MR | Zbl

[45] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, v. I, Birkhäuser Verlag, Basel, 1990, x+307 pp. | DOI | MR | Zbl | Zbl

[46] O. K. Sheinman, “Integrable systems of algebraic origin and separation of variables”, Funct. Anal. Appl., 52:4 (2018), 316–320 | DOI | DOI | MR | Zbl

[47] V. Sokolov, Algebraic structures in integrability, World Sci. Publ., Hackensack, NJ, 2020, xviii+327 pp. | DOI | MR | Zbl

[48] V. V. Sokolov, “Non-Abelian $\mathfrak{so}_3$ Euler top”, Russian Math. Surveys, 76:1 (2021), 183–185 | DOI | DOI | MR | Zbl

[49] P. Stäckel, Über die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variabeln, Habilitationsschrift, Halle A/S., B. G. Teubner, Leipzig, 1891, 26 pp. | Zbl

[50] S. P. Tsarëv, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419 | DOI | MR | Zbl

[51] A. V. Tsyganov, Integriruemye sistemy v metode razdeleniya peremennykh, Sovremennaya matematika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 384 pp.

[52] V. E. Zakharov (ed.), What is integrability?, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, xiv+321 pp. | DOI | MR | Zbl