@article{RM_2021_76_4_a1,
author = {V. M. Buchstaber and A. V. Mikhailov},
title = {Integrable polynomial {Hamiltonian} systems and symmetric powers of plane algebraic curves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {587--652},
year = {2021},
volume = {76},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/}
}
TY - JOUR AU - V. M. Buchstaber AU - A. V. Mikhailov TI - Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 587 EP - 652 VL - 76 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/ LA - en ID - RM_2021_76_4_a1 ER -
%0 Journal Article %A V. M. Buchstaber %A A. V. Mikhailov %T Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 587-652 %V 76 %N 4 %U http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/ %G en %F RM_2021_76_4_a1
V. M. Buchstaber; A. V. Mikhailov. Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 4, pp. 587-652. http://geodesic.mathdoc.fr/item/RM_2021_76_4_a1/
[1] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl
[2] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, Ergeb. Math. Grenzgeb. (3), 47, Springer-Verlag, Berlin, 2004, xii+483 pp. | DOI | MR | Zbl
[3] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | DOI | MR | MR | Zbl | Zbl
[4] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[5] M. Błaszak, Wen-Xiu Ma, “Separable Hamiltonian equations on Riemann manifolds and related integrable hydrodynamic systems”, J. Geom. Phys., 47:1 (2003), 21–42 | DOI | MR | Zbl
[6] V. M. Buchstaber, “Multidimensional sigma functions and applications”, in “Victor Enolski (1945–2019)” by E. Previato, Notices Amer. Math. Soc., 67:11 (2020), 1756–1760 | DOI | MR | Zbl
[7] V. M. Buchstaber, V. Z. Enolskiĭ, D. V. Leĭkin, “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997, 1–33 | DOI | MR | Zbl
[8] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10, Part 2, Gordon and Breach, London, 1997, 3–120 | Zbl
[9] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions, 2012, 267 pp., arXiv: 1208.0990
[10] V. M. Bukhshtaber, D. V. Leĭkin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[11] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Rational analogs of Abelian functions”, Funct. Anal. Appl., 33:2 (1999), 83–94 | DOI | DOI | MR | Zbl
[12] V. M. Buchstaber, A. V. Mikhailov, “Polynomial Hamiltonian integrable systems on symmetric powers of plane curves”, Russian Math. Surveys, 73:6 (2018), 1122–1124 | DOI | DOI | MR | Zbl
[13] V. M. Buchstaber, E. G. Rees, “The Gelfand map and symmetric products”, Selecta Math. (N. S.), 8:4 (2002), 523–535 | DOI | MR | Zbl
[14] V. M. Buchstaber, E. G. Rees, “Frobenius $n$-homomorphisms, transfers and branched coverings”, Math. Proc. Cambridge Philos. Soc., 144:1 (2008), 1–12 ; (2006), 15 pp., arXiv: math/0608120 | DOI | MR | Zbl
[15] V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 41–66 | DOI | MR | Zbl
[16] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc. (2), 21:1 (1923), 420–440 | DOI | MR | Zbl
[17] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. R. Soc. Lond. Ser. A, 118:780 (1928), 557–583 | DOI | Zbl
[18] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl
[19] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 1990, 173–280 | DOI | MR | MR | Zbl | Zbl
[20] B. A. Dubrovin, S. P. Novikov, “A periodicity problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry”, Soviet Math. Dokl., 15 (1974), 1597–1601 | MR | Zbl
[21] B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124 | DOI | MR | Zbl
[22] G. Ellingsrud, S. A. Strømme, “On the homology of the Hilbert scheme of points in the plane”, Invent. Math., 87:2 (1987), 343–352 | DOI | MR | Zbl
[23] E. V. Ferapontov, “Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by methods of the theory of webs”, Math. USSR-Sb., 71:1 (1992), 65–79 | DOI | MR | Zbl
[24] E. V. Ferapontov, “Equations of hydrodynamic type from the point of view of the theory of webs”, Math. Notes, 50:5 (1991), 1162–1170 | DOI | MR | Zbl
[25] E. V. Ferapontov, A. P. Fordy, “Separable Hamiltonians and integrable systems of hydrodynamic type”, J. Geom. Phys., 21:2 (1997), 169–182 | DOI | MR | Zbl
[26] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | Zbl
[27] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl
[28] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[29] F. Klein, “Über Hyperelliptische Sigmafunktionen. (Zweiter Aufsatz)”, Gesammelte Mathematische Abhandlungen, v. 3, J. Springer, Berlin, 1923, 323–357 | Zbl
[30] D. J. Korteweg, D. de Vries, “On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves”, Philos. Mag. (5), 39:240 (1895), 422–443 | DOI | MR | Zbl
[31] V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140 | DOI | DOI | MR | Zbl
[32] V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494 | DOI | DOI | MR | Zbl
[33] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl
[34] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp. | MR | MR | Zbl
[35] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl
[36] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, New York, 1995, x+475 pp. | MR | MR | Zbl | Zbl
[37] A. V. Mikhailov, “Quantisation ideals of nonabelian integrable systems”, Russian Math. Surveys, 75:5 (2020), 978–980 | DOI | DOI | MR | Zbl
[38] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl
[39] A. V. Mikhailov, V. V. Sokolov, “Integrable ODEs on associative algebras”, Comm. Math. Phys., 211:1 (2000), 231–251 | DOI | MR | Zbl
[40] O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622 | DOI | DOI | MR | Zbl
[41] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988, 448 pp.; D. Mumford, Tata lectures on theta, С‚. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 СЃ. ; v. II, 43, 1984, xiv+272 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[42] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[43] S. Novikov, “Rôle of integrable models in the development of mathematics”, Mathematical research today and tomorrow (Barcelona, 1991), Lecture Notes in Math., 1525, Springer, Berlin, 1992, 13–28 | DOI | MR | Zbl
[44] P. J. Olver, Jing Ping Wang, “Classification of integrable one-component systems on associative algebras”, Proc. London Math. Soc. (3), 81:3 (2000), 566–586 | DOI | MR | Zbl
[45] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, v. I, Birkhäuser Verlag, Basel, 1990, x+307 pp. | DOI | MR | Zbl | Zbl
[46] O. K. Sheinman, “Integrable systems of algebraic origin and separation of variables”, Funct. Anal. Appl., 52:4 (2018), 316–320 | DOI | DOI | MR | Zbl
[47] V. Sokolov, Algebraic structures in integrability, World Sci. Publ., Hackensack, NJ, 2020, xviii+327 pp. | DOI | MR | Zbl
[48] V. V. Sokolov, “Non-Abelian $\mathfrak{so}_3$ Euler top”, Russian Math. Surveys, 76:1 (2021), 183–185 | DOI | DOI | MR | Zbl
[49] P. Stäckel, Über die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variabeln, Habilitationsschrift, Halle A/S., B. G. Teubner, Leipzig, 1891, 26 pp. | Zbl
[50] S. P. Tsarëv, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419 | DOI | MR | Zbl
[51] A. V. Tsyganov, Integriruemye sistemy v metode razdeleniya peremennykh, Sovremennaya matematika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 384 pp.
[52] V. E. Zakharov (ed.), What is integrability?, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, xiv+321 pp. | DOI | MR | Zbl