Equivariant minimal model program
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 461-542

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the survey is to systematize a vast amount of information about the minimal model program for varieties with group actions. We discuss the basic methods of the theory and give sketches of the proofs of some principal results. Bibliography: 243 titles.
@article{RM_2021_76_3_a2,
     author = {Yu. G. Prokhorov},
     title = {Equivariant minimal model program},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {461--542},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_3_a2/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - Equivariant minimal model program
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 461
EP  - 542
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_3_a2/
LA  - en
ID  - RM_2021_76_3_a2
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T Equivariant minimal model program
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 461-542
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2021_76_3_a2/
%G en
%F RM_2021_76_3_a2
Yu. G. Prokhorov. Equivariant minimal model program. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 461-542. http://geodesic.mathdoc.fr/item/RM_2021_76_3_a2/