Mots-clés : Dulac germ, Écalle–Voronin moduli
@article{RM_2021_76_3_a1,
author = {P. Marde\v{s}i\'c and M. Resman},
title = {Analytic moduli for parabolic {Dulac} germs},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {389--460},
year = {2021},
volume = {76},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_3_a1/}
}
P. Mardešić; M. Resman. Analytic moduli for parabolic Dulac germs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 389-460. http://geodesic.mathdoc.fr/item/RM_2021_76_3_a1/
[1] W. Balser, From divergent power series to analytic functions. Theory and application of multisummable power series, Lecture Notes in Math., 1582, Springer-Verlag, Berlin, 1994, x+108 pp. | DOI | MR | Zbl
[2] L. Carleson, T. W. Gamelin, Complex dynamics, Universitext Tracts Math., Springer-Verlag, New York, 1993, x+175 pp. | DOI | MR | Zbl
[3] Kuo-Tsai Chen, “Iterated path integrals”, Bull. Amer. Math. Soc., 83:5 (1977), 831–879 | DOI | MR | Zbl
[4] H. Dulac, “Sur les cycles limites”, Bull. Soc. Math. France, 51 (1923), 45–188 | DOI | MR | Zbl
[5] J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Math., Hermann, Paris, 1992, ii+340 pp. | MR | Zbl
[6] L. Gavrilov, “Higher order Poincaré–Pontryagin functions and iterated path integrals”, Ann. Fac. Sci. Toulouse Math. (6), 14:4 (2005), 663–682 | DOI | MR | Zbl
[7] Yu. S. Il'yashenko, “Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane”, Funct. Anal. Appl., 18:3 (1984), 199–209 | DOI | MR | Zbl
[8] Yu. S. Il'yashenko, “Finiteness theorems for limit cycles”, Russian Math. Surveys, 45:2 (1990), 129–203 | DOI | MR | Zbl
[9] Yu. S. Il'yashenko, Finiteness theorems for limit cycles, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence, RI, 1991, x+288 pp. | DOI | MR | Zbl
[10] Yu. Ilyashenko, S. Yakovenko, Lectures on analytic differential equations, Grad. Stud. Math., 86, Amer. Math. Soc., Providence, RI, 2008, xiv+625 pp. | DOI | MR | Zbl
[11] M. Loday-Richaud, Divergent series, summability and resurgence II. Simple and multiple summability, Lecture Notes in Math., 2154, Springer, Cham, 2016, xxiii+272 pp. | DOI | MR | Zbl
[12] F. Loray, “Analyse des séries divergentes”, Quelques aspects des mathématiques actuelles, Mathématiques 2ème cycle, Ellipses, Paris, 1998, 111–173
[13] F. Loray, Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux, Prépublication IRMAR, ccsd-00016434, 2005, viii+186,\par https://hal.archives-ouvertes.fr/ccsd-00016434
[14] P. Mardešić, D. Novikov, L. Ortiz-Bobadilla, J. Pontigo-Herrera, “Bounding the length of iterated integrals of the first nonzero Melnikov function”, Mosc. Math. J., 18:2 (2018), 367–386 | DOI | MR | Zbl
[15] P. Mardešić, M. Resman, “Realization of analytic moduli for parabolic Dulac germs”, Ergodic Theory Dynam. Systems, Publ. online: 2021, 1–55 ; 2020 (v1 – 2019), 52 pp., arXiv: 1910.06130 | DOI
[16] P. Mardešić, M. Resman, J.-P. Rolin, V. Županović, “Normal forms and embeddings for power-log transseries”, Adv. Math., 303 (2016), 888–953 | DOI | MR | Zbl
[17] P. Mardešić, M. Resman, J.-P. Rolin, V. Županović, “The Fatou coordinate for parabolic Dulac germs”, J. Differential Equations, 266:6 (2019), 3479–3513 | DOI | MR | Zbl
[18] C. Mitschi, D. Sauzin, Divergent series, summability and resurgence I. Monodromy and resurgence, Lecture Notes in Math., 2153, Springer, Cham, 2016, xxi+298 pp. | DOI | MR | Zbl
[19] A. Mourtada, “Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan mise sous forme normale”, Bifurcations of planar vector fields (Luminy, 1989), Lecture Notes in Math., 1455, Springer, Berlin, 1990, 272–314 | DOI | MR | Zbl
[20] A. Mourtada, “Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude”, Ann. Inst. Fourier (Grenoble), 41:3 (1991), 719–753 | DOI | MR | Zbl
[21] R. Roussarie, Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progr. Math., 164, Birkhäuser Verlag, Basel, 1998, xviii+204 pp. | DOI | MR | Zbl
[22] S. M. Voronin, “Analytic classification of germs of conformal mappings $(\mathbf{C},0)\to(\mathbf{C},0)$ with identity linear part”, Funct. Anal. Appl., 15:1 (1981), 1–13 | DOI | MR | Zbl
[23] W. Wasow, Asymptotic expansions for ordinary differential equations, Reprint of the 1976 ed., Dover Publications Inc., New York, 1987, x+374 pp. | MR | Zbl | Zbl