Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 379-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results due to Keldysh on the convergence of Bieberbach polynomials and the density of polynomials in spaces of analytic functions are considered. Their further development and relevance in the contemporary context of constructive complex analysis are discussed. Particular focus is placed on Mergelyan's conjecture on the rate of convergence in a domain with smooth boundary, which is still open. Bibliography: 20 titles.
Keywords: Bieberbach polynomials; extremal properties of analytic functions; approximate conformal mappings; completeness of polynomials; orthogonal polynomials with respect to the area.
@article{RM_2021_76_3_a0,
     author = {A. I. Aptekarev},
     title = {Convergence of {Bieberbach} polynomials: {Keldysh's} theorems and {Mergelyan's} conjecture},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {379--387},
     year = {2021},
     volume = {76},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
TI  - Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 379
EP  - 387
VL  - 76
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/
LA  - en
ID  - RM_2021_76_3_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%T Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 379-387
%V 76
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/
%G en
%F RM_2021_76_3_a0
A. I. Aptekarev. Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/

[1] A. I. Aptekarev, N. G. Afendikova, “Neizvestnye avtografy akademika M. V. Keldysha”, Vestnik RAN, 88:12 (2018), 1153–1159 | DOI

[2] Keldysh's note https://keldysh.ru/memory/keldysh/apt-4.pdf

[3] M. Keldych, “Sur l'approximation en moyenne quadratique des fonctions analytiques”, Matem. sb., 5(47):2 (1939), 391–401 ; M. V. Keldysh, “Ob approksimatsii v srednem funktsii kompleksnogo peremennogo polinomami”: M. V. Keldysh, Izbrannye trudy. Matematika, Nauka, M., 1985, 82–91 | MR | Zbl | MR | Zbl

[4] S. N. Mergelyan, “On the completeness of systems of analytic functions”, Amer. Math. Soc. Transl. Ser. 2, 19, Amer. Math. Soc., Providence, RI, 1962, 109–166 | DOI | MR | MR | Zbl | Zbl

[5] V. P. Khavin, “Approksimatsiya mnogochlenami v srednem v nekotorykh nekarateodorievykh oblastyakh. I”, Izv. vuzov. Matem., 1968, no. 9, 86–93 | MR | Zbl

[6] V. P. Khavin, “Approksimatsiya mnogochlenami v srednem v nekotorykh nekarateodorievykh oblastyakh. II”, Izv. vuzov. Matem., 1968, no. 10, 87–94 | MR | Zbl

[7] M. S. Mel'nikov, S. O. Sinanyan, “Aspects of approximation theory for functions of one complex variable”, J. Soviet Math., 5:5 (1976), 688–752 | DOI | MR | Zbl

[8] D. Gaier, Konstructive Methoden der konformen Abbildung, Springer Tracts Nat. Philos., 3, Springer-Verlag, Berlin, 1964, xiii+294 pp. | DOI | MR | Zbl

[9] V. V. Andrievskii, I. E. Pritsker, “Convergence of Bieberbach polynomials in domains with interior cusps”, J. Anal. Math., 82 (2000), 315–332 | DOI | MR | Zbl

[10] S. N. Mergelyan, “Nekotorye voprosy konstruktivnoi teorii funktsii”, Tr. MIAN SSSR, 37, Izd-vo AN SSSR, M., 1951, 3–91 | MR | Zbl

[11] P. K. Suetin, “Polynomials orthogonal over a region and Bieberbach polynomials”, Proc. Steklov Inst. Math., 100 (1974), 1–91 | MR | Zbl

[12] D. Gaier, “On the convergence of the Bieberbach polynomials in regions with corners”, Constr. Approx., 4:3 (1988), 289–305 | DOI | MR | Zbl

[13] D. Gaier, “On the convergence of the Bieberbach polynomials in regions with piecewise analytic boundary”, Arch. Math. (Basel), 58:5 (1992), 462–470 | DOI | MR | Zbl

[14] D. Gaier, “Polynomial approximation of conformal maps”, Constr. Approx., 14:1 (1998), 27–40 | DOI | MR | Zbl

[15] I. B. Simonenko, “On the convergence of Bieberbach polynomials in the case of a Lipschitz domain”, Math. USSR-Izv., 13:1 (1979), 166–174 | DOI | MR | Zbl

[16] V. V. Andrievskii, “Convergence of Bieberbach polynomials in domains with quasiconformal boundary”, Ukrainian Math. J., 35:3 (1983), 233–236 | DOI | MR | Zbl

[17] F. G. Abdullayev, “Uniform convergence of the Bieberbach polynomials inside and on the closure of domains in the complex plane”, East J. Approx., 7:1 (2001), 77–101 | MR | Zbl

[18] I. E. Pritsker, “On the convergence of Bieberbach polynomials in domains with interior zero angles”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer, Berlin, 1993, 169–172 | DOI | MR | Zbl

[19] D. M. Israfilov, “Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^p(G,\omega)$ and the Bieberbach polynomials”, Constr. Approx., 17:3 (2001), 335–351 | DOI | MR | Zbl

[20] D. M. Israfilov, “Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation”, J. Approx. Theory, 125:1 (2003), 116–130 | DOI | MR | Zbl