Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 379-387
Voir la notice de l'article provenant de la source Math-Net.Ru
Results due to Keldysh on the convergence of Bieberbach polynomials and the density of polynomials in spaces of analytic functions are considered. Their further development and relevance in the contemporary context of constructive complex analysis are discussed. Particular focus is placed on Mergelyan's conjecture on the rate of convergence in a domain with smooth boundary, which is still open.
Bibliography: 20 titles.
Keywords:
Bieberbach polynomials; extremal properties of analytic functions; approximate conformal mappings; completeness of polynomials; orthogonal polynomials with respect to the area.
@article{RM_2021_76_3_a0,
author = {A. I. Aptekarev},
title = {Convergence of {Bieberbach} polynomials: {Keldysh's} theorems and {Mergelyan's} conjecture},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {379--387},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/}
}
TY - JOUR AU - A. I. Aptekarev TI - Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 379 EP - 387 VL - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/ LA - en ID - RM_2021_76_3_a0 ER -
A. I. Aptekarev. Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/