@article{RM_2021_76_3_a0,
author = {A. I. Aptekarev},
title = {Convergence of {Bieberbach} polynomials: {Keldysh's} theorems and {Mergelyan's} conjecture},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {379--387},
year = {2021},
volume = {76},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/}
}
TY - JOUR AU - A. I. Aptekarev TI - Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 379 EP - 387 VL - 76 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/ LA - en ID - RM_2021_76_3_a0 ER -
A. I. Aptekarev. Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/RM_2021_76_3_a0/
[1] A. I. Aptekarev, N. G. Afendikova, “Neizvestnye avtografy akademika M. V. Keldysha”, Vestnik RAN, 88:12 (2018), 1153–1159 | DOI
[2] Keldysh's note https://keldysh.ru/memory/keldysh/apt-4.pdf
[3] M. Keldych, “Sur l'approximation en moyenne quadratique des fonctions analytiques”, Matem. sb., 5(47):2 (1939), 391–401 ; M. V. Keldysh, “Ob approksimatsii v srednem funktsii kompleksnogo peremennogo polinomami”: M. V. Keldysh, Izbrannye trudy. Matematika, Nauka, M., 1985, 82–91 | MR | Zbl | MR | Zbl
[4] S. N. Mergelyan, “On the completeness of systems of analytic functions”, Amer. Math. Soc. Transl. Ser. 2, 19, Amer. Math. Soc., Providence, RI, 1962, 109–166 | DOI | MR | MR | Zbl | Zbl
[5] V. P. Khavin, “Approksimatsiya mnogochlenami v srednem v nekotorykh nekarateodorievykh oblastyakh. I”, Izv. vuzov. Matem., 1968, no. 9, 86–93 | MR | Zbl
[6] V. P. Khavin, “Approksimatsiya mnogochlenami v srednem v nekotorykh nekarateodorievykh oblastyakh. II”, Izv. vuzov. Matem., 1968, no. 10, 87–94 | MR | Zbl
[7] M. S. Mel'nikov, S. O. Sinanyan, “Aspects of approximation theory for functions of one complex variable”, J. Soviet Math., 5:5 (1976), 688–752 | DOI | MR | Zbl
[8] D. Gaier, Konstructive Methoden der konformen Abbildung, Springer Tracts Nat. Philos., 3, Springer-Verlag, Berlin, 1964, xiii+294 pp. | DOI | MR | Zbl
[9] V. V. Andrievskii, I. E. Pritsker, “Convergence of Bieberbach polynomials in domains with interior cusps”, J. Anal. Math., 82 (2000), 315–332 | DOI | MR | Zbl
[10] S. N. Mergelyan, “Nekotorye voprosy konstruktivnoi teorii funktsii”, Tr. MIAN SSSR, 37, Izd-vo AN SSSR, M., 1951, 3–91 | MR | Zbl
[11] P. K. Suetin, “Polynomials orthogonal over a region and Bieberbach polynomials”, Proc. Steklov Inst. Math., 100 (1974), 1–91 | MR | Zbl
[12] D. Gaier, “On the convergence of the Bieberbach polynomials in regions with corners”, Constr. Approx., 4:3 (1988), 289–305 | DOI | MR | Zbl
[13] D. Gaier, “On the convergence of the Bieberbach polynomials in regions with piecewise analytic boundary”, Arch. Math. (Basel), 58:5 (1992), 462–470 | DOI | MR | Zbl
[14] D. Gaier, “Polynomial approximation of conformal maps”, Constr. Approx., 14:1 (1998), 27–40 | DOI | MR | Zbl
[15] I. B. Simonenko, “On the convergence of Bieberbach polynomials in the case of a Lipschitz domain”, Math. USSR-Izv., 13:1 (1979), 166–174 | DOI | MR | Zbl
[16] V. V. Andrievskii, “Convergence of Bieberbach polynomials in domains with quasiconformal boundary”, Ukrainian Math. J., 35:3 (1983), 233–236 | DOI | MR | Zbl
[17] F. G. Abdullayev, “Uniform convergence of the Bieberbach polynomials inside and on the closure of domains in the complex plane”, East J. Approx., 7:1 (2001), 77–101 | MR | Zbl
[18] I. E. Pritsker, “On the convergence of Bieberbach polynomials in domains with interior zero angles”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer, Berlin, 1993, 169–172 | DOI | MR | Zbl
[19] D. M. Israfilov, “Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^p(G,\omega)$ and the Bieberbach polynomials”, Constr. Approx., 17:3 (2001), 335–351 | DOI | MR | Zbl
[20] D. M. Israfilov, “Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation”, J. Approx. Theory, 125:1 (2003), 116–130 | DOI | MR | Zbl