Hyperbolic Roussarie fields with degenerate quadratic part
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 366-368
Cet article a éte moissonné depuis la source Math-Net.Ru
A local normal form for Roussarie vector fields with degenerate quadratic part is presented.
Keywords:
Roussarie vector fields, normal forms, quotient vector fields, resonances.
@article{RM_2021_76_2_a6,
author = {N. G. Pavlova and A. O. Remizov},
title = {Hyperbolic {Roussarie} fields with degenerate quadratic part},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {366--368},
year = {2021},
volume = {76},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_2_a6/}
}
TY - JOUR AU - N. G. Pavlova AU - A. O. Remizov TI - Hyperbolic Roussarie fields with degenerate quadratic part JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 366 EP - 368 VL - 76 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_2_a6/ LA - en ID - RM_2021_76_2_a6 ER -
N. G. Pavlova; A. O. Remizov. Hyperbolic Roussarie fields with degenerate quadratic part. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 366-368. http://geodesic.mathdoc.fr/item/RM_2021_76_2_a6/
[1] R. Roussarie, Modèles locaux de champs et de formes, Astérisque, 30, Soc. Math. France, Paris, 1975, 181 pp. | MR | Zbl
[2] V. I. Arnold, A. B. Givental, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 4, VINITI, M., 1985, 5–135 | MR | MR | Zbl | Zbl
[3] N. G. Pavlova, A. O. Remizov, Izv. RAN. Ser. matem., 83:1 (2019), 119–139 | DOI | DOI | MR | Zbl
[4] D. V. Treschev, UMN, 75:1(451) (2020), 195–196 | DOI | DOI | MR | Zbl
[5] E. V. Nozdrinova, O. V. Pochinka, UMN, 75:2(452) (2020), 195–196 | DOI | DOI | MR | Zbl
[6] V. S. Samovol, Tr. MMO, 44, Izd-vo Mosk. un-ta, M., 1982, 213–234 | MR | Zbl
[7] Yu. S. Ilyashenko, S. Yu. Yakovenko, UMN, 46:1(277) (1991), 3–39 | DOI | MR | Zbl