Mots-clés : valuation.
@article{RM_2021_76_2_a2,
author = {J. C. Rebelo and H. Reis},
title = {On the resolution of singularities of one-dimensional foliations on three-manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {291--355},
year = {2021},
volume = {76},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_2_a2/}
}
TY - JOUR AU - J. C. Rebelo AU - H. Reis TI - On the resolution of singularities of one-dimensional foliations on three-manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 291 EP - 355 VL - 76 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_2_a2/ LA - en ID - RM_2021_76_2_a2 ER -
J. C. Rebelo; H. Reis. On the resolution of singularities of one-dimensional foliations on three-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 291-355. http://geodesic.mathdoc.fr/item/RM_2021_76_2_a2/
[1] M. Abate, “The residual index and the dynamics of holomorphic maps tangent to the identity”, Duke Math. J., 107:1 (2001), 173–207 | DOI | MR | Zbl
[2] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 1–148 | MR | MR | Zbl | Zbl
[3] M. Atiyah, N. Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, 11, Princeton Univ. Press, Princeton, NJ, 1988, viii+134 pp. | DOI | MR | MR | Zbl | Zbl
[4] F. E. Brochero Martínez, F. Cano, L. López-Hernanz, “Parabolic curves for diffeomorphisms in $\mathbb{C}^2$”, Publ. Mat., 52:1 (2008), 189–194 | DOI | MR | Zbl
[5] C. Camacho, A. Lins Neto, P. Sad, “Topological invariants and equidesingularization for holomorphic vector fields”, J. Differential Geom., 20:1 (1984), 143–174 | DOI | MR | Zbl
[6] C. Camacho, P. Sad, “Invariant varieties through singularities of holomorphic vector fields”, Ann. of Math. (2), 115:3 (1982), 579–595 | DOI | MR | Zbl
[7] F. Cano, “Reduction of the singularities of codimension one singular foliations in dimension three”, Ann. of Math. (2), 160:3 (2004), 907–1011 | DOI | MR | Zbl
[8] F. Cano, C. Roche, “Vector fields tangent to foliations and blow-ups”, J. Singul., 9 (2014), 43–49 | DOI | MR | Zbl
[9] F. Cano, C. Roche, M. Spivakovsky, “Reduction of singularities of three-dimensional line foliations”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 108:1 (2014), 221–258 | DOI | MR | Zbl
[10] F. Cano Torres, Desingularization strategies for three-dimensional vector fields, Lecture Notes in Math., 1259, Springer-Verlag, Berlin, 1987, x+194 pp. | DOI | MR | Zbl
[11] R. Conte (ed.), The Painlevé property. One century later, CRM Ser. Math. Phys., Springer-Verlag, New York, 1999, xxvi+810 pp. | DOI | MR | Zbl
[12] G. Dloussky, K. Oeljeklaus, M. Toma, “Surfaces de la classe $\mathrm{VII}_0$ admettant un champ de vecteurs”, Comment. Math. Helv., 75:2 (2000), 255–270 | DOI | MR | Zbl
[13] P. M. Elizarov, Yu. S. Il'yashenko, “Remarks on the orbital analytic classification of germs of vector fields”, Math. USSR-Sb., 49:1 (1984), 111–124 | DOI | MR | Zbl
[14] A. È. Eremenko, “Meromorphic solutions of algebraic differential equations”, Russian Math. Surveys, 37:4 (1982), 61–95 | DOI | MR | Zbl
[15] É. Ghys, J. C. Rebelo, “Singularités des flots holomorphes. II”, Ann. Inst. Fourier (Grenoble), 47:4 (1997), 1117–1174 | DOI | MR | Zbl
[16] A. Guillot, “Sur les équations d'Halphen et les actions de $\operatorname{SL}_2(\mathbf C)$”, Publ. Math. Inst. Hautes Études Sci., 105:1 (2007), 221–294 | DOI | MR | Zbl
[17] A. Guillot, “The geometry of Chazy's homogeneous third-order differential equations”, Funkcial. Ekvac., 55:1 (2012), 67–87 | DOI | MR | Zbl
[18] A. Guillot, J. C. Rebelo, “Semicomplete meromorphic vector fields on complex surfaces”, J. Reine Angew. Math., 2012:667 (2012), 27–65 | DOI | MR | Zbl
[19] M. Hakim, Transformations tangent to the identity. Stable pieces of manifolds, Prépublication Orsay 97-30, Univ. de Paris-Sud, Orsay, 1997, 36 pp. https://www.imo.universite-paris-saclay.fr/~biblio/pub/1997/abs/ppo1997_30.html
[20] M. Hakim, “Analytic transformations of $(\mathbf{C}^p,0)$ tangent to the identity”, Duke Math. J., 92:2 (1998), 403–428 | DOI | MR | Zbl
[21] Yu. Ilyashenko, S. Yakovenko, Lectures on analytic differential equations, Grad. Stud. Math., 86, Amer. Math. Soc., Providence, RI, 2008, xiv+625 pp. | DOI | MR | Zbl
[22] E. L. Ince, Ordinary differential equations, Reprint of the 1st ed., Dover Publications, New York, 1956, viii+558 pp. | MR | Zbl
[23] J. Malmquist, “Sur l'étude analytique des solutions d'un système d'équations différentielles dans le voisinage d'un point singulier d'indétermination. I”, Acta Math., 73 (1941), 87–129 | DOI | MR | Zbl
[24] F. Martin, E. Royer, “Formes modulaires et périodes”, Formes modulaires et transcendance, Sémin. Congr., 12, Soc. Math. France, Paris, 2005, 1–117 | MR | Zbl
[25] J.-F. Mattei, R. Moussu, “Holonomie et intégrales premières”, Ann. Sci. École Norm. Sup. (4), 13:4 (1980), 469–523 | DOI | MR | Zbl
[26] M. McQuillan, D. Panazzolo, “Almost étale resolution of foliations”, J. Differential Geometry, 95:2 (2013), 279–319 ; preprint IHES/M/09/51, IHES, Bures-sur-Yvette, 2009, 31 pp. http://preprints.ihes.fr/2009/M/M-09-51.pdf | DOI | MR | Zbl
[27] D. Panazzolo, “Resolution of singularities of real-analytic vector fields in dimension three”, Acta Math., 197:2 (2006), 167–289 | DOI | MR | Zbl
[28] O. Piltant, “An axiomatic version of Zariski's patching theorem”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 107:1 (2013), 91–121 ; preprint, Univ. de Valladolid, 2008 | DOI | MR | Zbl
[29] J.-P. Ramis, Y. Sibuya, “Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type”, Asymptotic Anal., 2:1 (1989), 39–94 | DOI | MR | Zbl
[30] J. C. Rebelo, “Singularités des flots holomorphes”, Ann. Inst. Fourier (Grenoble), 46:2 (1996), 411–428 | DOI | MR | Zbl
[31] H. Reis, “Equivalence and semi-completude of foliations”, Nonlinear Anal., 64:8 (2006), 1654–1665 | DOI | MR | Zbl
[32] H. Reis, “Semi-complete vector fields of saddle-node type in $\mathbb C^n$”, Trans. Amer. Math. Soc., 360:12 (2008), 6611–6630 | DOI | MR | Zbl
[33] A. Seidenberg, “Reduction of singularities of the differential equation $A\,dy=B\,dx$”, Amer. J. Math., 90 (1968), 248–269 | DOI | MR | Zbl
[34] B. J. Weickert, “Attracting basins for automorphisms of $\mathbf{C}^2$”, Invent. Math., 132:3 (1998), 581–605 | DOI | MR | Zbl