Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 261-289
Voir la notice de l'article provenant de la source Math-Net.Ru
The Enriques–Kodaira classification treats non-Kähler surfaces as a special case within the Kodaira framework. We prove the classification results for non-Kähler complex surfaces without relying on the machinery of the Enriques–Kodaira classification, and deduce the classification theorem for non-Kähler surfaces from the Buchdahl–Lamari theorem. We also prove that all non-Kähler surfaces which are not of class VII are locally conformally Kähler.
Bibliography: 64 titles.
Keywords:
locally conformally Kähler surface, Kato surface, elliptic fibration.
@article{RM_2021_76_2_a1,
author = {M. S. Verbitsky and V. Vuletescu and L. Ornea},
title = {Classification of {non-K\"ahler} surfaces and locally conformally {K\"ahler} geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {261--289},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/}
}
TY - JOUR AU - M. S. Verbitsky AU - V. Vuletescu AU - L. Ornea TI - Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 261 EP - 289 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/ LA - en ID - RM_2021_76_2_a1 ER -
%0 Journal Article %A M. S. Verbitsky %A V. Vuletescu %A L. Ornea %T Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 261-289 %V 76 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/ %G en %F RM_2021_76_2_a1
M. S. Verbitsky; V. Vuletescu; L. Ornea. Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 261-289. http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/