Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 261-289

Voir la notice de l'article provenant de la source Math-Net.Ru

The Enriques–Kodaira classification treats non-Kähler surfaces as a special case within the Kodaira framework. We prove the classification results for non-Kähler complex surfaces without relying on the machinery of the Enriques–Kodaira classification, and deduce the classification theorem for non-Kähler surfaces from the Buchdahl–Lamari theorem. We also prove that all non-Kähler surfaces which are not of class VII are locally conformally Kähler. Bibliography: 64 titles.
Keywords: locally conformally Kähler surface, Kato surface, elliptic fibration.
@article{RM_2021_76_2_a1,
     author = {M. S. Verbitsky and V. Vuletescu and L. Ornea},
     title = {Classification of {non-K\"ahler} surfaces and locally conformally {K\"ahler} geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {261--289},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/}
}
TY  - JOUR
AU  - M. S. Verbitsky
AU  - V. Vuletescu
AU  - L. Ornea
TI  - Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 261
EP  - 289
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/
LA  - en
ID  - RM_2021_76_2_a1
ER  - 
%0 Journal Article
%A M. S. Verbitsky
%A V. Vuletescu
%A L. Ornea
%T Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 261-289
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/
%G en
%F RM_2021_76_2_a1
M. S. Verbitsky; V. Vuletescu; L. Ornea. Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 261-289. http://geodesic.mathdoc.fr/item/RM_2021_76_2_a1/