Mots-clés : homotope, orthogonal decomposition of a Lie algebra, quantum protocol, Poincaré groupoid
@article{RM_2021_76_2_a0,
author = {A. I. Bondal and I. Yu. Zhdanovskiy},
title = {Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {195--259},
year = {2021},
volume = {76},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/}
}
TY - JOUR AU - A. I. Bondal AU - I. Yu. Zhdanovskiy TI - Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 195 EP - 259 VL - 76 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/ LA - en ID - RM_2021_76_2_a0 ER -
%0 Journal Article %A A. I. Bondal %A I. Yu. Zhdanovskiy %T Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 195-259 %V 76 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/ %G en %F RM_2021_76_2_a0
A. I. Bondal; I. Yu. Zhdanovskiy. Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 195-259. http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/
[1] A. A. Beilinson, “How to glue perverse sheaves”, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 42–51 | DOI | MR | Zbl
[2] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl
[3] C. H. Bennett, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”, Proceedings of international conference on computers systems and signal processing (Bangalore, India, 1984), IEEE, 1984, 175–179
[4] R. Bezrukavnikov, M. Kapranov, “Microlocal sheaves and quiver varieties”, Ann. Fac. Sci. Toulouse Math. (6), 25:2-3 (2016), 473–516 | DOI | MR | Zbl
[5] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl
[6] A. I. Bondal, M. M. Kapranov, “Enhanced triangulated categories”, Math. USSR-Sb., 70:1 (1991), 93–107 | DOI | MR | Zbl
[7] A. Bondal, M. Kapranov, V. Schechtman, “Perverse schobers and birational geometry”, Selecta Math. (N. S.), 24:1 (2018), 85–143 | DOI | MR | Zbl
[8] A. I. Bondal, M. Larsen, V. A. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not. IMRN, 2004:29 (2004), 1461–1495 | DOI | MR | Zbl
[9] A. Bondal, T. Logvinenko, Perverse schobers and orbifolds, preprint
[10] A. Bondal, I. Zhdanovskiy, “Coherence of relatively quasi-free algebras”, Eur. J. Math., 1:4 (2015), 695–703 | DOI | MR | Zbl
[11] A. Bondal, I. Zhdanovskiy, “Symplectic geometry of unbiasedness and critical points of a potential”, Primitive forms and related subjects – Kavli IPMU 2014, Adv. Stud. Pure Math., 83, Math. Soc. Japan, Tokyo, 2019, 1–18 | DOI | Zbl
[12] A. Bondal, I. Zhdanovskiy, “Ortogonal pairs and mutually unbiased bases”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXVI, Zap. nauch. sem. POMI, 437, POMI, SPb., 2015, 35–61 ; J. Math. Sci. (N. Y.), 216:1 (2016), 23–40 | MR | Zbl | DOI
[13] P. O. Boykin, M. Sitharam, P. H. Tiep, P. Wocjan, “Mutually unbiased bases and orthogonal decompositions of Lie algebras”, Quantum Inf. Comput., 7:4 (2007), 371–382 | MR | Zbl
[14] W. P. Brown, “Generalized matrix algebras”, Canad. J. Math., 7 (1955), 188–190 | DOI | MR | Zbl
[15] A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, “Quantum error correction and orthogonal geometry”, Phys. Rev. Lett., 78:3 (1997), 405–408 ; (1996), 4 pp., arXiv: quant-ph/9605005 | DOI | MR | Zbl
[16] S. U. Chase, “Direct products of modules”, Trans. Amer. Math. Soc., 97:3 (1960), 457–473 | DOI | MR | Zbl
[17] J. Cuntz, D. Quillen, “Algebra extensions and nonsingularity”, J. Amer. Math. Soc., 8:2 (1995), 251–289 | DOI | MR | Zbl
[18] P. Deligne, “Le formalisme des cycles évanescents”, Groupes de monodromie en géométrie algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 II), v. II, Lecture Notes in Math., 340, Springer-Verlag, Berlin–New York, 1973, 82–115 | DOI | MR | Zbl
[19] V. Dlab, C. M. Ringel, “Quasi-hereditary algebras”, Illinois J. Math., 33:2 (1989), 280–291 | DOI | MR | Zbl
[20] W. Donovan, “Perverse schobers and wall crossing”, Int. Math. Res. Not. IMRN, 2019:18 (2019), 5777–5810 | DOI | MR | Zbl
[21] A. I. Efimov, “On the homotopy finiteness of DG categories”, Russian Math. Surveys, 74:3 (2019), 431–460 | DOI | DOI | MR | Zbl
[22] B.-G. Englert, Ya. Aharonov, “The mean king's problem: prime degrees of freedom”, Phys. Lett. A, 284:1 (2001), 1–5 | DOI | MR
[23] S. N. Filippov, V. I. Man'ko, “Mutually unbiased bases: tomography of spin states and the star-product scheme”, Phys. Scr., 2011:T143 (2011), 014010, 6 pp. | DOI
[24] V. Franjou, T. Pirashvili, “Comparison of abelian categories recollements”, Doc. Math., 9 (2004), 41–56 | MR | Zbl
[25] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 239–246 | DOI | MR | Zbl
[26] S. I. Gelfand, Yu. I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996, xviii+372 pp. | DOI | MR | MR | Zbl | Zbl
[27] D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming bound”, Phys. Rev. A (3), 54:3 (1996), 1862–1868 | DOI | MR
[28] U. Haagerup, “Orthogonal maximal abelian $*$-subalgebras of the $n \times n$ matrices and cyclic $n$-roots”, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, 296–322 | MR | Zbl
[29] A. Harder, L. Katzarkov, “Perverse sheaves of categories and some applications”, Adv. Math., 352 (2019), 1155–1205 | DOI | MR | Zbl
[30] Y. Huang, “Entanglement criteria via concave-function uncertainty relations”, Phys. Rev. A, 82:1 (2010), 012335 | DOI
[31] I. D. Ivonović, “Geometrical description of quantal state determination”, J. Phys. A, 14:12 (1981), 3241–3245 | DOI | MR
[32] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp. | MR | Zbl
[33] V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials”, Ann. of Math. (2), 126:2 (1987), 335–388 | DOI | MR | Zbl
[34] M. Kapranov, V. Schechtman, Perverse schobers, 2015 (v1 – 2014), 36 pp., arXiv: 1411.2772
[35] M. Kapranov, V. Schechtman, “Perverse sheaves over real hyperplane arrangements”, Ann. of Math. (2), 183:2 (2016), 619–679 | DOI | MR | Zbl
[36] M. Kapranov, V. Schechtman, Perverse sheaves and graphs on surfaces, 2016, 19 pp., arXiv: 1601.01789
[37] A. S. Kocherova, I. Yu. Zhdanovskiy, “On the algebra generated by projectors with commutator relation”, Lobachevskii J. Math., 38:4 (2017), 670–687 | DOI | MR | Zbl
[38] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Orthogonal decompositions of simple Lie algebras (type $A_n$)”, Proc. Steklov Inst. Math., 158 (1983), 113–129 | MR | Zbl
[39] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “K voprosu ob odnoznachnosti ortogonalnykh razlozhenii algebr Li tipov $A_n$ i $C_n$. I, II”, Issledovaniya po algebre i topologii, Matem. issled., 74, Shtiintsa, Kishinev, 1983, 80–105, 106–116 | MR | Zbl
[40] A. I. Kostrikin, P. H. Tiep, Orthogonal decompositions and integral lattices, De Gruyter Exp. Math., 15, Walter de Gruyter Co., Berlin, 1994, x+535 pp. | DOI | MR | Zbl
[41] N. J. Kuhn, “Generic representations of the finite general linear groups and the Steenrod algebra. II”, K-theory, 8:4 (1994), 395–428 | DOI | MR | Zbl
[42] A. Kuznetsov, V. A. Lunts, “Categorical resolutions of irrational singularities”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4536–4625 | DOI | MR | Zbl
[43] M. Matolcsi, F. Szöllősi, “Towards a classification of $6 \times 6$ complex Hadamard matrices”, Open Syst. Inf. Dyn., 15:2 (2008), 93–108 | DOI | MR | Zbl
[44] R. Nicoară, “A finiteness result for commuting squares of matrix algebras”, J. Operator Theory, 55:2 (2006), 295–310 | MR | Zbl
[45] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl
[46] M. Petrescu, Existence of continuous families of complex Hadamard matrices of certain prime dimensions and related results, PhD thesis, Univ. of California, Los Angeles, 1997, 106 pp. | MR
[47] S. Popa, “Orthogonal pairs of $*$-subalgebras in finite von Neumann algebras”, J. Operator Theory, 9:2 (1983), 253–268 | MR | Zbl
[48] M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM's in quantum information theory”, Acta Appl. Math., 108:3 (2009), 709–719 | DOI | MR | Zbl
[49] V. Schechtman, “Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)”, Ann. Fac. Sci. Toulouse Math. (6), 22:2 (2013), 353–375 | DOI | MR | Zbl
[50] J. Schwinger, “Unitary operator bases”, Proc. Nat. Acad. Sci. U.S.A., 46:4 (1960), 570–579 | DOI | MR | Zbl
[51] F. Szöllősi, “Complex Hadamard matrices of order 6: a four-parameter family”, J. Lond. Math. Soc. (2), 85:3 (2012), 616–632 | DOI | MR | Zbl
[52] W. Tadej, K. Życzkowski, “Defect of a unitary matrix”, Linear Algebra Appl., 429:2-3 (2008), 447–481 | DOI | MR | Zbl
[53] L. Vaidman, Ya. Aharonov, D. Z. Albert, “How to ascertain the values of $\sigma_{x}$, $\sigma_{y}$ and $\sigma_{z}$ of a spin-1/2 particle”, Phys. Rev. Lett., 58:14 (1987), 1385–1387 | DOI | MR
[54] W. K. Wootters, B. D. Fields, “Optimal state-determination by mutually unbiased measurements”, Ann. Physics, 191:2 (1989), 363–381 | DOI | MR
[55] I. Yu. Zhdanovskiy, “Homotopes of finite-dimensional algebras”, Comm. Algebra, 49:1 (2020), 43–57 | DOI | MR | Zbl
[56] I. Yu. Zhdanovskiy, A. S. Kocherova, “Algebras of projectors and mutually unbiased bases in dimension 7”, J. Math. Sci. (N. Y.), 241:2 (2019), 125–157 | DOI | MR | Zbl