Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 195-259
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued t-structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley–Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras $\operatorname{sl}(n,\mathbb{C})$ into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed. Bibliography: 56 titles.
Keywords: well-tempered element, mutually unbiased bases, Temperley–Lieb algebra, generalized Hadamard matrix, Laplace operator on a graph, discrete harmonic analysis, perverse sheaves, gluing of t-structures.
Mots-clés : homotope, orthogonal decomposition of a Lie algebra, quantum protocol, Poincaré groupoid
@article{RM_2021_76_2_a0,
     author = {A. I. Bondal and I. Yu. Zhdanovskiy},
     title = {Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {195--259},
     year = {2021},
     volume = {76},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/}
}
TY  - JOUR
AU  - A. I. Bondal
AU  - I. Yu. Zhdanovskiy
TI  - Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 195
EP  - 259
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/
LA  - en
ID  - RM_2021_76_2_a0
ER  - 
%0 Journal Article
%A A. I. Bondal
%A I. Yu. Zhdanovskiy
%T Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 195-259
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/
%G en
%F RM_2021_76_2_a0
A. I. Bondal; I. Yu. Zhdanovskiy. Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 2, pp. 195-259. http://geodesic.mathdoc.fr/item/RM_2021_76_2_a0/

[1] A. A. Beilinson, “How to glue perverse sheaves”, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 42–51 | DOI | MR | Zbl

[2] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl

[3] C. H. Bennett, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”, Proceedings of international conference on computers systems and signal processing (Bangalore, India, 1984), IEEE, 1984, 175–179

[4] R. Bezrukavnikov, M. Kapranov, “Microlocal sheaves and quiver varieties”, Ann. Fac. Sci. Toulouse Math. (6), 25:2-3 (2016), 473–516 | DOI | MR | Zbl

[5] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[6] A. I. Bondal, M. M. Kapranov, “Enhanced triangulated categories”, Math. USSR-Sb., 70:1 (1991), 93–107 | DOI | MR | Zbl

[7] A. Bondal, M. Kapranov, V. Schechtman, “Perverse schobers and birational geometry”, Selecta Math. (N. S.), 24:1 (2018), 85–143 | DOI | MR | Zbl

[8] A. I. Bondal, M. Larsen, V. A. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not. IMRN, 2004:29 (2004), 1461–1495 | DOI | MR | Zbl

[9] A. Bondal, T. Logvinenko, Perverse schobers and orbifolds, preprint

[10] A. Bondal, I. Zhdanovskiy, “Coherence of relatively quasi-free algebras”, Eur. J. Math., 1:4 (2015), 695–703 | DOI | MR | Zbl

[11] A. Bondal, I. Zhdanovskiy, “Symplectic geometry of unbiasedness and critical points of a potential”, Primitive forms and related subjects – Kavli IPMU 2014, Adv. Stud. Pure Math., 83, Math. Soc. Japan, Tokyo, 2019, 1–18 | DOI | Zbl

[12] A. Bondal, I. Zhdanovskiy, “Ortogonal pairs and mutually unbiased bases”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXVI, Zap. nauch. sem. POMI, 437, POMI, SPb., 2015, 35–61 ; J. Math. Sci. (N. Y.), 216:1 (2016), 23–40 | MR | Zbl | DOI

[13] P. O. Boykin, M. Sitharam, P. H. Tiep, P. Wocjan, “Mutually unbiased bases and orthogonal decompositions of Lie algebras”, Quantum Inf. Comput., 7:4 (2007), 371–382 | MR | Zbl

[14] W. P. Brown, “Generalized matrix algebras”, Canad. J. Math., 7 (1955), 188–190 | DOI | MR | Zbl

[15] A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, “Quantum error correction and orthogonal geometry”, Phys. Rev. Lett., 78:3 (1997), 405–408 ; (1996), 4 pp., arXiv: quant-ph/9605005 | DOI | MR | Zbl

[16] S. U. Chase, “Direct products of modules”, Trans. Amer. Math. Soc., 97:3 (1960), 457–473 | DOI | MR | Zbl

[17] J. Cuntz, D. Quillen, “Algebra extensions and nonsingularity”, J. Amer. Math. Soc., 8:2 (1995), 251–289 | DOI | MR | Zbl

[18] P. Deligne, “Le formalisme des cycles évanescents”, Groupes de monodromie en géométrie algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 II), v. II, Lecture Notes in Math., 340, Springer-Verlag, Berlin–New York, 1973, 82–115 | DOI | MR | Zbl

[19] V. Dlab, C. M. Ringel, “Quasi-hereditary algebras”, Illinois J. Math., 33:2 (1989), 280–291 | DOI | MR | Zbl

[20] W. Donovan, “Perverse schobers and wall crossing”, Int. Math. Res. Not. IMRN, 2019:18 (2019), 5777–5810 | DOI | MR | Zbl

[21] A. I. Efimov, “On the homotopy finiteness of DG categories”, Russian Math. Surveys, 74:3 (2019), 431–460 | DOI | DOI | MR | Zbl

[22] B.-G. Englert, Ya. Aharonov, “The mean king's problem: prime degrees of freedom”, Phys. Lett. A, 284:1 (2001), 1–5 | DOI | MR

[23] S. N. Filippov, V. I. Man'ko, “Mutually unbiased bases: tomography of spin states and the star-product scheme”, Phys. Scr., 2011:T143 (2011), 014010, 6 pp. | DOI

[24] V. Franjou, T. Pirashvili, “Comparison of abelian categories recollements”, Doc. Math., 9 (2004), 41–56 | MR | Zbl

[25] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 239–246 | DOI | MR | Zbl

[26] S. I. Gelfand, Yu. I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996, xviii+372 pp. | DOI | MR | MR | Zbl | Zbl

[27] D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming bound”, Phys. Rev. A (3), 54:3 (1996), 1862–1868 | DOI | MR

[28] U. Haagerup, “Orthogonal maximal abelian $*$-subalgebras of the $n \times n$ matrices and cyclic $n$-roots”, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, 296–322 | MR | Zbl

[29] A. Harder, L. Katzarkov, “Perverse sheaves of categories and some applications”, Adv. Math., 352 (2019), 1155–1205 | DOI | MR | Zbl

[30] Y. Huang, “Entanglement criteria via concave-function uncertainty relations”, Phys. Rev. A, 82:1 (2010), 012335 | DOI

[31] I. D. Ivonović, “Geometrical description of quantal state determination”, J. Phys. A, 14:12 (1981), 3241–3245 | DOI | MR

[32] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp. | MR | Zbl

[33] V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials”, Ann. of Math. (2), 126:2 (1987), 335–388 | DOI | MR | Zbl

[34] M. Kapranov, V. Schechtman, Perverse schobers, 2015 (v1 – 2014), 36 pp., arXiv: 1411.2772

[35] M. Kapranov, V. Schechtman, “Perverse sheaves over real hyperplane arrangements”, Ann. of Math. (2), 183:2 (2016), 619–679 | DOI | MR | Zbl

[36] M. Kapranov, V. Schechtman, Perverse sheaves and graphs on surfaces, 2016, 19 pp., arXiv: 1601.01789

[37] A. S. Kocherova, I. Yu. Zhdanovskiy, “On the algebra generated by projectors with commutator relation”, Lobachevskii J. Math., 38:4 (2017), 670–687 | DOI | MR | Zbl

[38] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Orthogonal decompositions of simple Lie algebras (type $A_n$)”, Proc. Steklov Inst. Math., 158 (1983), 113–129 | MR | Zbl

[39] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “K voprosu ob odnoznachnosti ortogonalnykh razlozhenii algebr Li tipov $A_n$ i $C_n$. I, II”, Issledovaniya po algebre i topologii, Matem. issled., 74, Shtiintsa, Kishinev, 1983, 80–105, 106–116 | MR | Zbl

[40] A. I. Kostrikin, P. H. Tiep, Orthogonal decompositions and integral lattices, De Gruyter Exp. Math., 15, Walter de Gruyter Co., Berlin, 1994, x+535 pp. | DOI | MR | Zbl

[41] N. J. Kuhn, “Generic representations of the finite general linear groups and the Steenrod algebra. II”, K-theory, 8:4 (1994), 395–428 | DOI | MR | Zbl

[42] A. Kuznetsov, V. A. Lunts, “Categorical resolutions of irrational singularities”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4536–4625 | DOI | MR | Zbl

[43] M. Matolcsi, F. Szöllősi, “Towards a classification of $6 \times 6$ complex Hadamard matrices”, Open Syst. Inf. Dyn., 15:2 (2008), 93–108 | DOI | MR | Zbl

[44] R. Nicoară, “A finiteness result for commuting squares of matrix algebras”, J. Operator Theory, 55:2 (2006), 295–310 | MR | Zbl

[45] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl

[46] M. Petrescu, Existence of continuous families of complex Hadamard matrices of certain prime dimensions and related results, PhD thesis, Univ. of California, Los Angeles, 1997, 106 pp. | MR

[47] S. Popa, “Orthogonal pairs of $*$-subalgebras in finite von Neumann algebras”, J. Operator Theory, 9:2 (1983), 253–268 | MR | Zbl

[48] M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM's in quantum information theory”, Acta Appl. Math., 108:3 (2009), 709–719 | DOI | MR | Zbl

[49] V. Schechtman, “Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)”, Ann. Fac. Sci. Toulouse Math. (6), 22:2 (2013), 353–375 | DOI | MR | Zbl

[50] J. Schwinger, “Unitary operator bases”, Proc. Nat. Acad. Sci. U.S.A., 46:4 (1960), 570–579 | DOI | MR | Zbl

[51] F. Szöllősi, “Complex Hadamard matrices of order 6: a four-parameter family”, J. Lond. Math. Soc. (2), 85:3 (2012), 616–632 | DOI | MR | Zbl

[52] W. Tadej, K. Życzkowski, “Defect of a unitary matrix”, Linear Algebra Appl., 429:2-3 (2008), 447–481 | DOI | MR | Zbl

[53] L. Vaidman, Ya. Aharonov, D. Z. Albert, “How to ascertain the values of $\sigma_{x}$, $\sigma_{y}$ and $\sigma_{z}$ of a spin-1/2 particle”, Phys. Rev. Lett., 58:14 (1987), 1385–1387 | DOI | MR

[54] W. K. Wootters, B. D. Fields, “Optimal state-determination by mutually unbiased measurements”, Ann. Physics, 191:2 (1989), 363–381 | DOI | MR

[55] I. Yu. Zhdanovskiy, “Homotopes of finite-dimensional algebras”, Comm. Algebra, 49:1 (2020), 43–57 | DOI | MR | Zbl

[56] I. Yu. Zhdanovskiy, A. S. Kocherova, “Algebras of projectors and mutually unbiased bases in dimension 7”, J. Math. Sci. (N. Y.), 241:2 (2019), 125–157 | DOI | MR | Zbl