Non-Abelian $\mathfrak{so}_3$ Euler top
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2021_76_1_a4,
     author = {V. V. Sokolov},
     title = {Non-Abelian $\mathfrak{so}_3$ {Euler} top},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {183--185},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/}
}
TY  - JOUR
AU  - V. V. Sokolov
TI  - Non-Abelian $\mathfrak{so}_3$ Euler top
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 183
EP  - 185
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/
LA  - en
ID  - RM_2021_76_1_a4
ER  - 
%0 Journal Article
%A V. V. Sokolov
%T Non-Abelian $\mathfrak{so}_3$ Euler top
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 183-185
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/
%G en
%F RM_2021_76_1_a4
V. V. Sokolov. Non-Abelian $\mathfrak{so}_3$ Euler top. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/