Non-Abelian $\mathfrak{so}_3$ Euler top
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2021_76_1_a4,
author = {V. V. Sokolov},
title = {Non-Abelian $\mathfrak{so}_3$ {Euler} top},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {183--185},
publisher = {mathdoc},
volume = {76},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/}
}
V. V. Sokolov. Non-Abelian $\mathfrak{so}_3$ Euler top. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/