Non-Abelian $\mathfrak{so}_3$ Euler top
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2021_76_1_a4,
     author = {V. V. Sokolov},
     title = {Non-Abelian $\mathfrak{so}_3$ {Euler} top},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {183--185},
     year = {2021},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/}
}
TY  - JOUR
AU  - V. V. Sokolov
TI  - Non-Abelian $\mathfrak{so}_3$ Euler top
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 183
EP  - 185
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/
LA  - en
ID  - RM_2021_76_1_a4
ER  - 
%0 Journal Article
%A V. V. Sokolov
%T Non-Abelian $\mathfrak{so}_3$ Euler top
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 183-185
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/
%G en
%F RM_2021_76_1_a4
V. V. Sokolov. Non-Abelian $\mathfrak{so}_3$ Euler top. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/

[1] V. Sokolov, T. Wolf, Lett. Math. Phys., 110:3 (2020), 533–553 | DOI | MR | Zbl

[2] V. E. Adler, V. V. Sokolov, Math. Phys. Anal. Geom., 24:1 (2021), 7, 24 pp., arXiv: 2008.09174 | DOI | MR

[3] K. Kimura, A Lax pair of the discrete Euler top in terms of quaternions, 2017 (v1 – 2016), 5 pp., arXiv: 1611.02271 | MR

[4] A. V. Mikhailov, UMN, 75:5(455) (2020), 199–200 | DOI | MR

[5] C. P. Novikov, UMN, 75:6(456) (2020), 153–161 | DOI | MR