Non-Abelian $\mathfrak{so}_3$ Euler top
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2021_76_1_a4,
author = {V. V. Sokolov},
title = {Non-Abelian $\mathfrak{so}_3$ {Euler} top},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {183--185},
year = {2021},
volume = {76},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/}
}
V. V. Sokolov. Non-Abelian $\mathfrak{so}_3$ Euler top. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 183-185. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a4/
[1] V. Sokolov, T. Wolf, Lett. Math. Phys., 110:3 (2020), 533–553 | DOI | MR | Zbl
[2] V. E. Adler, V. V. Sokolov, Math. Phys. Anal. Geom., 24:1 (2021), 7, 24 pp., arXiv: 2008.09174 | DOI | MR
[3] K. Kimura, A Lax pair of the discrete Euler top in terms of quaternions, 2017 (v1 – 2016), 5 pp., arXiv: 1611.02271 | MR
[4] A. V. Mikhailov, UMN, 75:5(455) (2020), 199–200 | DOI | MR
[5] C. P. Novikov, UMN, 75:6(456) (2020), 153–161 | DOI | MR