Newton polytopes and tropical geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 91-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The practice of bringing together the concepts of ‘Newton polytopes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. Bibliography: 68 titles.
Keywords: family of algebraic varieties, Newton polytope, ring of conditions, toric variety, tropical geometry, mixed volume, exponential sum.
@article{RM_2021_76_1_a2,
     author = {B. Ya. Kazarnovskii and A. G. Khovanskii and A. I. Esterov},
     title = {Newton polytopes and tropical geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--175},
     year = {2021},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
AU  - A. G. Khovanskii
AU  - A. I. Esterov
TI  - Newton polytopes and tropical geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 91
EP  - 175
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/
LA  - en
ID  - RM_2021_76_1_a2
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%A A. G. Khovanskii
%A A. I. Esterov
%T Newton polytopes and tropical geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 91-175
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/
%G en
%F RM_2021_76_1_a2
B. Ya. Kazarnovskii; A. G. Khovanskii; A. I. Esterov. Newton polytopes and tropical geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 91-175. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/

[1] I. A. Aĭzenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Transl. Math. Monogr., 58, Amer. Math. Soc., Providence, RI, 1983, x+283 pp. | DOI | MR | MR | Zbl | Zbl

[2] A. D. Aleksandrov, Geometriya i prilozheniya, Izbrannye trudy, 1, Nauka, Novosibirsk, 2006, lii+748 pp. | MR | Zbl

[3] G. M. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469 | DOI | MR | Zbl

[4] D. N. Bernstein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR | Zbl

[5] B. Bertrand, E. Brugallé, G. Mikhalkin, “Genus 0 characteristic numbers of the tropical projective plane”, Compos. Math., 150:1 (2014), 46–104 ; (2013 (v1 – 2011)), 55 pp., arXiv: 1105.2004 | DOI | MR | Zbl

[6] E. Bombieri, D. Masser, U. Zannier, “Anomalous subvarieties – structure theorems and applications”, Int. Math. Res. Not. IMRN, 2007:19 (2007), rnm057, 33 pp. | DOI | MR | Zbl

[7] M. Brion, “Piecewise polynomial functions, convex polytopes and enumerative geometry”, Parameter spaces (Warsaw, 1994), Banach Center Publ., 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, 25–44 | MR | Zbl

[8] M. Brion, “The structure of the polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32 | DOI | MR | Zbl

[9] E. Brugallé, I. Itenberg, G. Mikhalkin, K. Shaw, “Brief introduction to tropical geometry”, Proceedings of Gökova geometry-topology conference 2014, Gökova Geometry/Topology Conferences (GGT), Gökova; International Press, Somerville, MA, 2015, 1–75 | MR | Zbl

[10] C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the International congress of mathematicians (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 369–377 | MR | Zbl

[11] C. De Concini, C. Procesi, “Complete symmetric varieties. II. Intersection theory”, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513 | DOI | MR | Zbl

[12] A. Dickenstein, M. I. Herrero, L. F. Tabera, “Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials”, Israel J. Math., 221:2 (2017), 741–777 ; (2016), 24 pp., arXiv: 1601.05479 | DOI | MR | Zbl

[13] M. Einsiedler, M. Kapranov, D. Lind, “Non-archimedean amoebas and tropical varieties”, J. Reine Angew. Math., 2006:601 (2006), 139–157 | DOI | MR | Zbl

[14] A. I. Esterov, “Indices of 1-forms, resultants and Newton polyhedra”, Russian Math. Surveys, 60:2 (2005), 352–353 | DOI | DOI | MR | Zbl

[15] A. I. Èsterov, “Indices of 1-forms, intersection indices, and Newton polyhedra”, Sb. Math., 197:7 (2006), 1085–1108 ; (2010 (v1 – 2009)), 35 СЃ., arXiv: 0906.5097 | DOI | DOI | MR | Zbl

[16] A. Esterov, “Characteristic classes of affine varieties and Plücker formulas for affine morphisms”, J. Eur. Math. Soc. (JEMS), 20:1 (2018), 15–59 ; (2016 (v1 – 2013)), 44 pp., arXiv: 1305.3234 | DOI | MR | Zbl

[17] G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math., 168, Springer-Verlag, New York, 1996, xiv+372 pp. | DOI | MR | Zbl

[18] F. Fillastre, “Fuchsian convex bodies: basics of Brunn–Minkowski theory”, Geom. Funct. Anal., 23:1 (2013), 295–333 ; (2012 (v1 – 2011)), 30 pp., arXiv: 1112.5353 | DOI | MR | Zbl

[19] W. Fulton, B. Sturmfels, “Intersection theory on toric varieties”, Topology, 36:2 (1997), 335–353 ; (1994), 24 pp., arXiv: alg-geom/9403002 | DOI | MR | Zbl

[20] A. Gathmann, M. Kerber, H. Markwig, “Tropical fans and the moduli spaces of tropical curves”, Compos. Math., 145:1 (2009), 173–195 ; (2009 (v1 – 2007)), 23 pp., arXiv: 0708.2268 | DOI | MR | Zbl

[21] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl

[22] A. Gross, “Correspondence theorems via tropicalizations of moduli spaces”, Commun. Contemp. Math., 18:3 (2016), 1550043, 36 pp. ; (2016 (v1 – 2014)), 32 pp., arXiv: 1406.1999 | DOI | MR | Zbl

[23] A. Gross, Refined tropicalizations for schön subvarieties of tori, 2017, 18 pp., arXiv: 1705.05719

[24] J. Hofscheier, A. Khovanskii, L. Monin, Cohomology rings of toric bundles and the ring of conditions, 2020, 22 pp., arXiv: 2006.12043

[25] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp. | DOI | MR | Zbl

[26] I. Itenberg, E. Shustin, “Singular points and limit cycles of planar polynomial vector fields”, Duke Math. J., 102:1 (2000), 1–37 | DOI | MR | Zbl

[27] B. Ya. Kazarnovskii, “On the zeros of exponential sums”, Soviet Math. Dokl., 23 (1981), 347–351 | MR | Zbl

[28] B. Ya. Kazarnovskii, “Exponential analytic sets”, Funct. Anal. Appl., 31:2 (1997), 86–94 | DOI | DOI | MR | Zbl

[29] B. Ya. Kazarnovskii, “Truncation of systems of polynomial equations, ideals and varieties”, Izv. Math., 63:3 (1999), 535–547 | DOI | DOI | MR | Zbl

[30] B. Ya. Kazarnovskii, “c-fans and Newton polyhedra of algebraic varieties”, Izv. Math., 67:3 (2003), 439–460 | DOI | DOI | MR | Zbl

[31] B. Ya. Kazarnovskii, “On the action of the complex Monge–Ampère operator on piecewise linear functions”, Funct. Anal. Appl., 48:1 (2014), 15–23 | DOI | DOI | MR | Zbl

[32] B. Ya. Kazarnovskiĭ, A. G. Khovanskiĭ, “Tropical noetherity and Gröbner bases”, St. Petersburg Math. J., 26:5 (2015), 797–811 | DOI | MR | Zbl

[33] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl

[34] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl

[35] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl

[36] A. G. Khovanskii, “Geometriya vypuklykh mnogogrannikov i algebraicheskaya geometriya”, V st.: “Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva (vtoraya sessiya, 18–20 yanvarya 1979 g.)”, UMN, 34:4(208) (1979), 160–161

[37] A. G. Khovanskii, “Hyperplane sections of polyhedra, toroidal manifolds, and discrete groups in Lobachevskii space”, Funct. Anal. Appl., 20:1 (1986), 41–50 | DOI | MR | Zbl

[38] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monogr., 88, Amer. Math. Soc., Providence, RI, 1991, viii+139 pp. | DOI | MR | MR | Zbl

[39] A. Khovanskii, “Newton polyhedra and good compactification theorem”, Arnold Math. J., Publ. online: 2020, 23 pp. ; 2020, 19 pp., arXiv: 2002.02069 | DOI

[40] A. G. Khovanskii, “Newton polytopes and irreducible components of complete intersections”, Izv. Math., 80:1 (2016), 263–284 | DOI | DOI | MR | Zbl

[41] A. Khovanskiĭ, V. Timorin, “On the theory of coconvex bodies”, Discrete Comput. Geom., 52:4 (2014), 806–823 ; (2013), 17 pp., arXiv: 1308.1781 | DOI | MR | Zbl

[42] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR | Zbl

[43] D. Maclagan, B. Sturmfels, Introduction to tropical geometry, Grad. Stud. Math., 161, Amer. Math. Soc., Providence, RI, 2015, xii+363 pp. | DOI | MR | Zbl

[44] R. D. MacPherson, “Chern classes for singular algebraic varieties”, Ann. of Math. (2), 100 (1974), 423–432 | DOI | MR | Zbl

[45] H. Markwig, T. Markwig, E. Shustin, “Enumeration of complex and real surfaces via tropical geometry”, Adv. Geom., 18:1 (2018), 69–100 ; (2018 (v1 – 2015)), 30 pp., arXiv: 1503.08593 | DOI | MR | Zbl

[46] P. McMullen, “The polytope algebra”, Adv. Math., 78:1 (1989), 76–130 | DOI | MR | Zbl

[47] G. Mikhalkin, “Enumerative tropical algebraic geometry in $\mathbb{R}^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 ; (2004 (v1 – 2003)), 83 pp., arXiv: math/0312530 | DOI | MR | Zbl

[48] G. Mikhalkin, “Tropical geometry and its applications”, Proceedings of the International congress of mathematicians (Madrid, 2006), v. II, Eur. Math. Soc., Zürich, 2006, 827–852 | MR | Zbl

[49] H. Minkowski, “Theorie der konvexen Körpern, insbesondere Begründung ihres Oberflächenbegriffs”, Gesammelte Abhandlungen, v. 2, B. G. Teubner, Leipzig, 1911, 131–229 | Zbl

[50] M. Oka, “Principal zeta-function of non-degenerate complete intersection singularity”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37:1 (1990), 11–32 | MR | Zbl

[51] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 151, 2nd ed., Cambridge Univ. Press, Cambridge, 2014, xxii+736 pp. | DOI | MR | Zbl

[52] M. H. Schwartz, “Classes et caractères de Chern–Mather des espaces linéaires”, C. R. Acad. Sci. Paris Sér. I Math., 295:5 (1982), 399–402 | MR | Zbl

[53] E. Shustin, “A tropical approach to enumerative geometry”, Algebra i analiz, 17:2 (2005), 170–214 ; St. Petersburg Math. J., 17:2 (2006), 343–375 | MR | Zbl | DOI

[54] E. Shustin, “Tropical and algebraic curves with multiple points”, Perspectives in analysis, geometry, and topology, Progr. Math., 296, Birkhäuser/Springer, New York, 2012, 431–464 ; 2009, 35 pp., arXiv: 0904.2834 | DOI | MR | Zbl

[55] T. Nishinou, B. Siebert, “Toric degenerations of toric varieties and tropical curves”, Duke Math. J., 135:1 (2006), 1–51 ; (2006 (v1 – 2004)), 41 pp., arXiv: math/0409060 | DOI | MR | Zbl

[56] D. Speyer, “Horn's problem, Vinnikov curves, and the hive cone”, Duke Math. J., 127:3 (2005), 395–427 | DOI | MR | Zbl

[57] R. P. Stanley, “The number of faces of a simplicial convex polytope”, Adv. Math., 35:3 (1980), 236–238 | DOI | MR | Zbl

[58] R. Stanley, “Generalized $H$-vectors, intersection cohomology of toric varieties, and related results”, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987, 187–213 | DOI | MR | Zbl

[59] B. Sturmfels, “On the Newton polytope of the resultant”, J. Algebraic Combin., 3:2 (1994), 207–236 | DOI | MR | Zbl

[60] B. Sturmfels, Solving systems of polynomial equations, CBMS Reg. Conf. Ser. Math., 97, Amer. Math. Soc., Providence, RI, 2002, viii+152 pp. | DOI | MR | Zbl

[61] B. Teissier, “Du théorème de l'index de Hodge aux inégalités isopérimétriques”, C. R. Acad. Sci. Paris Sér. A-B, 288:4 (1979), A287–A289 | MR | Zbl

[62] J. Tevelev, “Compactifications of subvarieties of tori”, Amer. J. Math., 129:4 (2007), 1087–1104 ; (2005 (v1 – 2004)), 14 pp., arXiv: math/0412329 | DOI | MR | Zbl

[63] I. Tyomkin, “Tropical geometry and correspondence theorems via toric stacks”, Math. Ann., 353:3 (2012), 945–995 ; (2011 (v1 – 2010)), 49 pp., arXiv: 1001.1554 | DOI | MR | Zbl

[64] A. N. Varchenko, “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37:3 (1976), 253–262 | DOI | MR | Zbl

[65] O. Y. Viro, “Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7”, Topology (Leningrad, 1982), Lecture Notes in Math., 1060, Springer, Berlin, 1984, 187–200 | DOI | MR | Zbl

[66] O. Viro, Hyperfields for tropical geometry I. Hyperfields and dequantization, 2010, 47 pp., arXiv: 1006.3034v2

[67] H. Weyl, “Mean motion”, Amer. J. Math., 60:4 (1938), 889–896 | DOI | MR | Zbl

[68] B. Zilber, “Exponential sums equations and the Schanuel conjecture”, J. London Math. Soc. (2), 65:1 (2002), 27–44 | DOI | MR | Zbl