Newton polytopes and tropical geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 91-175

Voir la notice de l'article provenant de la source Math-Net.Ru

The practice of bringing together the concepts of ‘Newton polytopes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. Bibliography: 68 titles.
Keywords: family of algebraic varieties, Newton polytope, ring of conditions, toric variety, tropical geometry, mixed volume, exponential sum.
@article{RM_2021_76_1_a2,
     author = {B. Ya. Kazarnovskii and A. G. Khovanskii and A. I. Esterov},
     title = {Newton polytopes and tropical geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--175},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
AU  - A. G. Khovanskii
AU  - A. I. Esterov
TI  - Newton polytopes and tropical geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 91
EP  - 175
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/
LA  - en
ID  - RM_2021_76_1_a2
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%A A. G. Khovanskii
%A A. I. Esterov
%T Newton polytopes and tropical geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 91-175
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/
%G en
%F RM_2021_76_1_a2
B. Ya. Kazarnovskii; A. G. Khovanskii; A. I. Esterov. Newton polytopes and tropical geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 91-175. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/