@article{RM_2021_76_1_a2,
author = {B. Ya. Kazarnovskii and A. G. Khovanskii and A. I. Esterov},
title = {Newton polytopes and tropical geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {91--175},
year = {2021},
volume = {76},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/}
}
TY - JOUR AU - B. Ya. Kazarnovskii AU - A. G. Khovanskii AU - A. I. Esterov TI - Newton polytopes and tropical geometry JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 91 EP - 175 VL - 76 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/ LA - en ID - RM_2021_76_1_a2 ER -
B. Ya. Kazarnovskii; A. G. Khovanskii; A. I. Esterov. Newton polytopes and tropical geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 76 (2021) no. 1, pp. 91-175. http://geodesic.mathdoc.fr/item/RM_2021_76_1_a2/
[1] I. A. Aĭzenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Transl. Math. Monogr., 58, Amer. Math. Soc., Providence, RI, 1983, x+283 pp. | DOI | MR | MR | Zbl | Zbl
[2] A. D. Aleksandrov, Geometriya i prilozheniya, Izbrannye trudy, 1, Nauka, Novosibirsk, 2006, lii+748 pp. | MR | Zbl
[3] G. M. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469 | DOI | MR | Zbl
[4] D. N. Bernstein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR | Zbl
[5] B. Bertrand, E. Brugallé, G. Mikhalkin, “Genus 0 characteristic numbers of the tropical projective plane”, Compos. Math., 150:1 (2014), 46–104 ; (2013 (v1 – 2011)), 55 pp., arXiv: 1105.2004 | DOI | MR | Zbl
[6] E. Bombieri, D. Masser, U. Zannier, “Anomalous subvarieties – structure theorems and applications”, Int. Math. Res. Not. IMRN, 2007:19 (2007), rnm057, 33 pp. | DOI | MR | Zbl
[7] M. Brion, “Piecewise polynomial functions, convex polytopes and enumerative geometry”, Parameter spaces (Warsaw, 1994), Banach Center Publ., 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, 25–44 | MR | Zbl
[8] M. Brion, “The structure of the polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32 | DOI | MR | Zbl
[9] E. Brugallé, I. Itenberg, G. Mikhalkin, K. Shaw, “Brief introduction to tropical geometry”, Proceedings of Gökova geometry-topology conference 2014, Gökova Geometry/Topology Conferences (GGT), Gökova; International Press, Somerville, MA, 2015, 1–75 | MR | Zbl
[10] C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the International congress of mathematicians (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 369–377 | MR | Zbl
[11] C. De Concini, C. Procesi, “Complete symmetric varieties. II. Intersection theory”, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513 | DOI | MR | Zbl
[12] A. Dickenstein, M. I. Herrero, L. F. Tabera, “Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials”, Israel J. Math., 221:2 (2017), 741–777 ; (2016), 24 pp., arXiv: 1601.05479 | DOI | MR | Zbl
[13] M. Einsiedler, M. Kapranov, D. Lind, “Non-archimedean amoebas and tropical varieties”, J. Reine Angew. Math., 2006:601 (2006), 139–157 | DOI | MR | Zbl
[14] A. I. Esterov, “Indices of 1-forms, resultants and Newton polyhedra”, Russian Math. Surveys, 60:2 (2005), 352–353 | DOI | DOI | MR | Zbl
[15] A. I. Èsterov, “Indices of 1-forms, intersection indices, and Newton polyhedra”, Sb. Math., 197:7 (2006), 1085–1108 ; (2010 (v1 – 2009)), 35 СЃ., arXiv: 0906.5097 | DOI | DOI | MR | Zbl
[16] A. Esterov, “Characteristic classes of affine varieties and Plücker formulas for affine morphisms”, J. Eur. Math. Soc. (JEMS), 20:1 (2018), 15–59 ; (2016 (v1 – 2013)), 44 pp., arXiv: 1305.3234 | DOI | MR | Zbl
[17] G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math., 168, Springer-Verlag, New York, 1996, xiv+372 pp. | DOI | MR | Zbl
[18] F. Fillastre, “Fuchsian convex bodies: basics of Brunn–Minkowski theory”, Geom. Funct. Anal., 23:1 (2013), 295–333 ; (2012 (v1 – 2011)), 30 pp., arXiv: 1112.5353 | DOI | MR | Zbl
[19] W. Fulton, B. Sturmfels, “Intersection theory on toric varieties”, Topology, 36:2 (1997), 335–353 ; (1994), 24 pp., arXiv: alg-geom/9403002 | DOI | MR | Zbl
[20] A. Gathmann, M. Kerber, H. Markwig, “Tropical fans and the moduli spaces of tropical curves”, Compos. Math., 145:1 (2009), 173–195 ; (2009 (v1 – 2007)), 23 pp., arXiv: 0708.2268 | DOI | MR | Zbl
[21] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl
[22] A. Gross, “Correspondence theorems via tropicalizations of moduli spaces”, Commun. Contemp. Math., 18:3 (2016), 1550043, 36 pp. ; (2016 (v1 – 2014)), 32 pp., arXiv: 1406.1999 | DOI | MR | Zbl
[23] A. Gross, Refined tropicalizations for schön subvarieties of tori, 2017, 18 pp., arXiv: 1705.05719
[24] J. Hofscheier, A. Khovanskii, L. Monin, Cohomology rings of toric bundles and the ring of conditions, 2020, 22 pp., arXiv: 2006.12043
[25] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp. | DOI | MR | Zbl
[26] I. Itenberg, E. Shustin, “Singular points and limit cycles of planar polynomial vector fields”, Duke Math. J., 102:1 (2000), 1–37 | DOI | MR | Zbl
[27] B. Ya. Kazarnovskii, “On the zeros of exponential sums”, Soviet Math. Dokl., 23 (1981), 347–351 | MR | Zbl
[28] B. Ya. Kazarnovskii, “Exponential analytic sets”, Funct. Anal. Appl., 31:2 (1997), 86–94 | DOI | DOI | MR | Zbl
[29] B. Ya. Kazarnovskii, “Truncation of systems of polynomial equations, ideals and varieties”, Izv. Math., 63:3 (1999), 535–547 | DOI | DOI | MR | Zbl
[30] B. Ya. Kazarnovskii, “c-fans and Newton polyhedra of algebraic varieties”, Izv. Math., 67:3 (2003), 439–460 | DOI | DOI | MR | Zbl
[31] B. Ya. Kazarnovskii, “On the action of the complex Monge–Ampère operator on piecewise linear functions”, Funct. Anal. Appl., 48:1 (2014), 15–23 | DOI | DOI | MR | Zbl
[32] B. Ya. Kazarnovskiĭ, A. G. Khovanskiĭ, “Tropical noetherity and Gröbner bases”, St. Petersburg Math. J., 26:5 (2015), 797–811 | DOI | MR | Zbl
[33] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl
[34] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl
[35] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl
[36] A. G. Khovanskii, “Geometriya vypuklykh mnogogrannikov i algebraicheskaya geometriya”, V st.: “Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva (vtoraya sessiya, 18–20 yanvarya 1979 g.)”, UMN, 34:4(208) (1979), 160–161
[37] A. G. Khovanskii, “Hyperplane sections of polyhedra, toroidal manifolds, and discrete groups in Lobachevskii space”, Funct. Anal. Appl., 20:1 (1986), 41–50 | DOI | MR | Zbl
[38] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monogr., 88, Amer. Math. Soc., Providence, RI, 1991, viii+139 pp. | DOI | MR | MR | Zbl
[39] A. Khovanskii, “Newton polyhedra and good compactification theorem”, Arnold Math. J., Publ. online: 2020, 23 pp. ; 2020, 19 pp., arXiv: 2002.02069 | DOI
[40] A. G. Khovanskii, “Newton polytopes and irreducible components of complete intersections”, Izv. Math., 80:1 (2016), 263–284 | DOI | DOI | MR | Zbl
[41] A. Khovanskiĭ, V. Timorin, “On the theory of coconvex bodies”, Discrete Comput. Geom., 52:4 (2014), 806–823 ; (2013), 17 pp., arXiv: 1308.1781 | DOI | MR | Zbl
[42] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR | Zbl
[43] D. Maclagan, B. Sturmfels, Introduction to tropical geometry, Grad. Stud. Math., 161, Amer. Math. Soc., Providence, RI, 2015, xii+363 pp. | DOI | MR | Zbl
[44] R. D. MacPherson, “Chern classes for singular algebraic varieties”, Ann. of Math. (2), 100 (1974), 423–432 | DOI | MR | Zbl
[45] H. Markwig, T. Markwig, E. Shustin, “Enumeration of complex and real surfaces via tropical geometry”, Adv. Geom., 18:1 (2018), 69–100 ; (2018 (v1 – 2015)), 30 pp., arXiv: 1503.08593 | DOI | MR | Zbl
[46] P. McMullen, “The polytope algebra”, Adv. Math., 78:1 (1989), 76–130 | DOI | MR | Zbl
[47] G. Mikhalkin, “Enumerative tropical algebraic geometry in $\mathbb{R}^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 ; (2004 (v1 – 2003)), 83 pp., arXiv: math/0312530 | DOI | MR | Zbl
[48] G. Mikhalkin, “Tropical geometry and its applications”, Proceedings of the International congress of mathematicians (Madrid, 2006), v. II, Eur. Math. Soc., Zürich, 2006, 827–852 | MR | Zbl
[49] H. Minkowski, “Theorie der konvexen Körpern, insbesondere Begründung ihres Oberflächenbegriffs”, Gesammelte Abhandlungen, v. 2, B. G. Teubner, Leipzig, 1911, 131–229 | Zbl
[50] M. Oka, “Principal zeta-function of non-degenerate complete intersection singularity”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37:1 (1990), 11–32 | MR | Zbl
[51] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 151, 2nd ed., Cambridge Univ. Press, Cambridge, 2014, xxii+736 pp. | DOI | MR | Zbl
[52] M. H. Schwartz, “Classes et caractères de Chern–Mather des espaces linéaires”, C. R. Acad. Sci. Paris Sér. I Math., 295:5 (1982), 399–402 | MR | Zbl
[53] E. Shustin, “A tropical approach to enumerative geometry”, Algebra i analiz, 17:2 (2005), 170–214 ; St. Petersburg Math. J., 17:2 (2006), 343–375 | MR | Zbl | DOI
[54] E. Shustin, “Tropical and algebraic curves with multiple points”, Perspectives in analysis, geometry, and topology, Progr. Math., 296, Birkhäuser/Springer, New York, 2012, 431–464 ; 2009, 35 pp., arXiv: 0904.2834 | DOI | MR | Zbl
[55] T. Nishinou, B. Siebert, “Toric degenerations of toric varieties and tropical curves”, Duke Math. J., 135:1 (2006), 1–51 ; (2006 (v1 – 2004)), 41 pp., arXiv: math/0409060 | DOI | MR | Zbl
[56] D. Speyer, “Horn's problem, Vinnikov curves, and the hive cone”, Duke Math. J., 127:3 (2005), 395–427 | DOI | MR | Zbl
[57] R. P. Stanley, “The number of faces of a simplicial convex polytope”, Adv. Math., 35:3 (1980), 236–238 | DOI | MR | Zbl
[58] R. Stanley, “Generalized $H$-vectors, intersection cohomology of toric varieties, and related results”, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987, 187–213 | DOI | MR | Zbl
[59] B. Sturmfels, “On the Newton polytope of the resultant”, J. Algebraic Combin., 3:2 (1994), 207–236 | DOI | MR | Zbl
[60] B. Sturmfels, Solving systems of polynomial equations, CBMS Reg. Conf. Ser. Math., 97, Amer. Math. Soc., Providence, RI, 2002, viii+152 pp. | DOI | MR | Zbl
[61] B. Teissier, “Du théorème de l'index de Hodge aux inégalités isopérimétriques”, C. R. Acad. Sci. Paris Sér. A-B, 288:4 (1979), A287–A289 | MR | Zbl
[62] J. Tevelev, “Compactifications of subvarieties of tori”, Amer. J. Math., 129:4 (2007), 1087–1104 ; (2005 (v1 – 2004)), 14 pp., arXiv: math/0412329 | DOI | MR | Zbl
[63] I. Tyomkin, “Tropical geometry and correspondence theorems via toric stacks”, Math. Ann., 353:3 (2012), 945–995 ; (2011 (v1 – 2010)), 49 pp., arXiv: 1001.1554 | DOI | MR | Zbl
[64] A. N. Varchenko, “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37:3 (1976), 253–262 | DOI | MR | Zbl
[65] O. Y. Viro, “Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7”, Topology (Leningrad, 1982), Lecture Notes in Math., 1060, Springer, Berlin, 1984, 187–200 | DOI | MR | Zbl
[66] O. Viro, Hyperfields for tropical geometry I. Hyperfields and dequantization, 2010, 47 pp., arXiv: 1006.3034v2
[67] H. Weyl, “Mean motion”, Amer. J. Math., 60:4 (1938), 889–896 | DOI | MR | Zbl
[68] B. Zilber, “Exponential sums equations and the Schanuel conjecture”, J. London Math. Soc. (2), 65:1 (2002), 27–44 | DOI | MR | Zbl