Eliminating Higher-Multiplicity Intersections, III. Codimension 2
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1156-1158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2020_75_6_a6,
     author = {S. Ya. Avvakumov and U. Wagner and I. Mabillard and A. B. Skopenkov},
     title = {Eliminating {Higher-Multiplicity} {Intersections,~III.} {Codimension~2}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1156--1158},
     year = {2020},
     volume = {75},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a6/}
}
TY  - JOUR
AU  - S. Ya. Avvakumov
AU  - U. Wagner
AU  - I. Mabillard
AU  - A. B. Skopenkov
TI  - Eliminating Higher-Multiplicity Intersections, III. Codimension 2
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 1156
EP  - 1158
VL  - 75
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a6/
LA  - en
ID  - RM_2020_75_6_a6
ER  - 
%0 Journal Article
%A S. Ya. Avvakumov
%A U. Wagner
%A I. Mabillard
%A A. B. Skopenkov
%T Eliminating Higher-Multiplicity Intersections, III. Codimension 2
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 1156-1158
%V 75
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2020_75_6_a6/
%G en
%F RM_2020_75_6_a6
S. Ya. Avvakumov; U. Wagner; I. Mabillard; A. B. Skopenkov. Eliminating Higher-Multiplicity Intersections, III. Codimension 2. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1156-1158. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a6/

[1] S. Avvakumov, I. Mabillard, A. Skopenkov, U. Wagner, Eliminating higher-multiplicity intersections. III. Codimension 2, 2018 (v1 – 2015), 24 pp., arXiv: 1511.03501v5

[2] M. H. Freedman, V. S. Krushkal, P. Teichner, “Van Kampen's embedding obstruction is incomplete for $2$-complexes in $\mathbb{R}^4$”, Math. Res. Lett., 1:2 (1994), 167–176 | DOI | MR | Zbl

[3] I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections. I. A Whitney trick for Tverberg-type problems, 2015, 40 pp., arXiv: 1508.02349

[4] S. A. Melikhov, Gauss type formulas for link map invariants, 2017, 21 pp., arXiv: 1711.03530

[5] M. Özaydin, Equivariant maps for the symmetric group, Unpublished preprint, Univ. of Wisconsin–Madison, 1987, 17 pp. http://minds.wisconsin.edu/handle/1793/63829

[6] A. B. Skopenkov, “A user's guide to the topological Tverberg conjecture”, Russian Math. Surveys, 73:2 (2018), 323–353 ; arXiv: 1605.05141 | DOI | DOI | MR | Zbl