Mikhail Aleksandrovich Shubin (obituary)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1143-1152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2020_75_6_a4,
     author = {M. Braverman and V. M. Buchstaber and M. Gromov and V. Ivrii and Yu. A. Kordyukov and P. Kuchment and V. Maz'ya and S. P. Novikov and T. Sunada and L. Friedlander and A. G. Khovanskii},
     title = {Mikhail {Aleksandrovich} {Shubin} (obituary)},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1143--1152},
     year = {2020},
     volume = {75},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a4/}
}
TY  - JOUR
AU  - M. Braverman
AU  - V. M. Buchstaber
AU  - M. Gromov
AU  - V. Ivrii
AU  - Yu. A. Kordyukov
AU  - P. Kuchment
AU  - V. Maz'ya
AU  - S. P. Novikov
AU  - T. Sunada
AU  - L. Friedlander
AU  - A. G. Khovanskii
TI  - Mikhail Aleksandrovich Shubin (obituary)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 1143
EP  - 1152
VL  - 75
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a4/
LA  - en
ID  - RM_2020_75_6_a4
ER  - 
%0 Journal Article
%A M. Braverman
%A V. M. Buchstaber
%A M. Gromov
%A V. Ivrii
%A Yu. A. Kordyukov
%A P. Kuchment
%A V. Maz'ya
%A S. P. Novikov
%A T. Sunada
%A L. Friedlander
%A A. G. Khovanskii
%T Mikhail Aleksandrovich Shubin (obituary)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 1143-1152
%V 75
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2020_75_6_a4/
%G en
%F RM_2020_75_6_a4
M. Braverman; V. M. Buchstaber; M. Gromov; V. Ivrii; Yu. A. Kordyukov; P. Kuchment; V. Maz'ya; S. P. Novikov; T. Sunada; L. Friedlander; A. G. Khovanskii. Mikhail Aleksandrovich Shubin (obituary). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1143-1152. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a4/

[1] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Acad. Publ., Dordrecht, 1991, xviii+555 pp. | DOI | MR | MR | Zbl | Zbl

[2] M. Braverman, O. Milatovic, M. Shubin, “Essential self-adjointness of Schrödinger-type operators on manifolds”, Russian Math. Surveys, 57:4 (2002), 641–692 | DOI | DOI | MR | Zbl

[3] Yu. V. Egorov, M. A. Shubin, “Linear partial differential equations. Foundations of the classical theory”, Partial differential equations I, Encyclopaedia Math. Sci., 30, Springer, Berlin, 1992, 1–259 | MR | MR | Zbl | Zbl

[4] B. V. Fedosov, M. A. Shubin, “The index of random elliptic operators. I”, Math. USSR-Sb., 34:5 (1978), 671–699 | DOI | MR | Zbl

[5] M. Gromov, M. A. Shubin, “Von Neumann spectra near zero”, Geom. Funct. Anal., 1:4 (1991), 375–404 | DOI | MR | Zbl

[6] M. Gromov, M. A. Shubin, “The Riemann–Roch theorem for elliptic operators”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, 211–241 | MR | Zbl

[7] M. Gromov, M. A. Shubin, “The Riemann–Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets” (Saint-Jean-de-Monts, 1993), Journées Équations aux Dérivées Partielles, École Polytech., Palaiseau, 1993, Exp. No. XVIII, 13 pp. | MR | Zbl

[8] M. Gromov, M. A. Shubin, “The Riemann–Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets”, Invent. Math., 117:1 (1994), 165–180 | DOI | MR | Zbl

[9] T. Kappeler, P. Perry, M. Shubin, P. Topalov, “The Miura map on the line”, Int. Math. Res. Not., 2005:50 (2005), 3091–3133 | DOI | MR | Zbl

[10] T. Kappeler, P. Perry, M. Shubin, P. Topalov, “Solutions of mKdV in classes of functions unbounded at infinity”, J. Geom. Anal., 18:2 (2008), 443–477 | DOI | MR | Zbl

[11] V. Kondratiev, V. Maz'ya, M. Shubin, “Discreteness of spectrum and strict positivity criteria for magnetic Schrödinger operators”, Comm. Partial Differential Equations, 29:3-4 (2004), 489–521 | DOI | MR | Zbl

[12] V. Kondratiev, V. Maz'ya, M. Shubin, “Gauge optimization and spectral properties of magnetic Schrödinger operators”, Comm. Partial Differential Equations, 34:10-12 (2009), 1127–1146 | DOI | MR | Zbl

[13] V. Kondrat'ev, M. Shubin, “Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry”, The Maz'ya anniversary collection (Rostock, 1998), v. 2, Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 185–226 | MR | Zbl

[14] V. Kondratiev, M. Shubin, “Discreteness of spectrum for the magnetic Schrödinger operators”, Comm. Partial Differential Equations, 27:3-4 (2002), 477–525 | DOI | MR | Zbl

[15] S. M. Kozlov, M. A. Shubin, “A theorem on the coincidence of spectra for random elliptic operators”, Funct. Anal. Appl., 16:4 (1982), 305–306 | DOI | MR | Zbl

[16] S. M. Kozlov, M. A. Shubin, “On the coincidence of the spectra of random elliptic operators”, Math. USSR-Sb., 51:2 (1985), 455–471 | DOI | MR | Zbl

[17] V. Maz'ya, M. Shubin, “Discreteness of spectrum and positivity criteria for Schrödinger operators”, Ann. of Math. (2), 162:2 (2005), 919–942 | DOI | MR | Zbl

[18] V. Maz'ya, M. Shubin, “Can one see the fundamental frequency of a drum?”, Lett. Math. Phys., 74:2 (2005), 135–151 | DOI | MR | Zbl

[19] S. P. Novikov, M. A. Shubin, “Morse inequalities and von Neumann $\mathrm{II}_1$-factors”, Soviet Math. Dokl., 34 (1987), 79–82 | MR | Zbl

[20] S. P. Novikov, M. A. Shubin, “Neravenstva Morsa i algebry fon Neimana”, V st.: “Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva (devyataya sessiya, 20–23 yanvarya 1986 g.)”, UMN, 41:4(250) (1986), 163–164

[21] S. P. Novikov, M. A. Shubin, “Teoriya Morsa i neimanovskie invarianty neodnosvyaznykh mnogoobrazii”, V st.: “Zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki”, UMN, 41:5(251) (1986), 222–223

[22] G. V. Rozenblyum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations VII, Encyclopaedia Math. Sci., 64, Springer, Berlin, 1994, 1–261 | MR | Zbl

[23] D. Schenk, M. A. Shubin, “Asymptotic expansion of the state density and the spectral function of a Hill operator”, Math. USSR-Sb., 56:2 (1987), 473–490 | DOI | MR | Zbl

[24] D. Schenk, M. A. Shubin, “Asymptotic expansion of the spectral function of the Hill operator”, Funct. Anal. Appl., 20:1 (1986), 78–79 | DOI | MR | Zbl

[25] M. A. Shubin, “O golomorfnykh semeistvakh podprostranstv banakhova prostranstva”, Matem. issled., 5:4(18) (1970), 153–165 | MR | Zbl

[26] M. A. Šubin, “Differential and pseudodifferential operators in spaces of almost periodic functions”, Math. USSR-Sb., 24:4 (1974), 547–573 | DOI | MR | Zbl

[27] M. A. Shubin, “Theorems on the coincidence of the spectra of pseudodifferential almost-periodic operators in the spaces $L^2(\mathbf R^n)$ and $B^2(\mathbf R^n)$”, Siberian Math. J., 17:1 (1976), 158–170 | DOI | MR | Zbl

[28] M. A. Shubin, “Pseudodifferential almost-periodic operators and von Neumann algebras”, Trans. Moscow Math. Soc., 35 (1979), 103–166 | MR | Zbl

[29] M. A. Shubin, “Almost periodic functions and partial differential operators”, Russian Math. Surveys, 33:2 (1978), 1–52 | DOI | MR | Zbl

[30] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987, x+278 pp. | MR | MR | Zbl | Zbl

[31] M. A. Šubin, “The density of states of selfadjoint elliptic operators with almost periodic coefficients”, Amer. Math. Soc. Transl. Ser. 2, 118, Amer. Math. Soc., Providence, RI, 1982, 307–339 | DOI | MR | Zbl

[32] M. A. Shubin, “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russian Math. Surveys, 34:2 (1979), 109–157 | DOI | MR | Zbl

[33] M. A. Shubin, “Spectral properties and the spectrum distribution function of a transversally elliptic operator”, J. Soviet Math., 32 (1986), 406–422 | DOI | MR | Zbl

[34] M. A. Shubin, “Pseudodifference operators and their Green's functions”, Math. USSR-Izv., 26:3 (1986), 605–622 | DOI | MR | Zbl

[35] M. A. Shubin, “Spectral theory of elliptic operators on non-compact manifolds”, Méthodes semi-classiques (Nantes, 1991), v. 1, Astérisque, 207, Soc. Math. France, Paris, 1992, 35–108 | MR | Zbl

[36] M. A. Shubin, “Discrete magnetic Laplacian”, Comm. Math. Phys., 164:2 (1994), 259–275 | DOI | MR | Zbl

[37] M. A. Shubin, “$L^2$ Riemann–Roch theorem for elliptic operators”, Geom. Funct. Anal., 5:2 (1995), 482–527 | DOI | MR | Zbl

[38] M. Shubin, “Spectral theory of the Schrödinger operators on non-compact manifolds: qualitative results”, Spectral theory and geometry (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., 273, Cambridge Univ. Press, Cambridge, 1999, 226–283 | DOI | MR | Zbl

[39] M. A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, M., 2001, 2003, 303 pp.

[40] M. A. Shubin, Matematicheskii analiz dlya resheniya fizicheskikh zadach, Biblioteka “Matematicheskoe prosveschenie”, 23, MTsNMO, M., 2003, 40 pp.

[41] M. Shubin, Invitation to partial differential equations, Grad. Stud. Math., 205, eds. M. Braverman, R. McOwen, P. Topalov, Amer. Math. Soc., Providence, RI, 2020, xvii+319 pp. | Zbl

[42] M. Shubin, T. Sunada, “Geometric theory of lattice vibrations and specific heat”, Pure Appl. Math. Q., 2:3, Special issue: In honor of R. D. MacPherson. Part 1 (2006), 745–777 | DOI | MR | Zbl

[43] V. N. Tulovskiĭ, M. A. Shubin, “On asymptotic distribution of eigenvalues of pseudodifferential operators in $\mathbf R^n$”, Math. USSR-Sb., 21:4 (1973), 565–583 | DOI | MR | Zbl

[44] A. K. Zvonkin, M. A. Shubin, “Non-standard analysis and singular perturbations of ordinary differential equations”, Russian Math. Surveys, 39:2 (1984), 69–131 | DOI | MR | Zbl