@article{RM_2020_75_6_a3,
author = {S. P. Novikov},
title = {Spinning tops and magnetic orbits},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1133--1141},
year = {2020},
volume = {75},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a3/}
}
S. P. Novikov. Spinning tops and magnetic orbits. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1133-1141. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a3/
[1] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984, 344 pp. | MR | Zbl
[2] S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory”, Soviet Math. Dokl., 24 (1981), 222–226 | MR | Zbl
[3] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[4] V. V. Kozlov, “The principle of least action and periodic solutions in problems of classical mechanics”, J. Appl. Math. Mech., 40:3 (1976), 363–370 | DOI | Zbl
[5] V. V. Kozlov, D. A. Onishchenko, “Nonintegrability of Kirchhoff's equations”, Soviet Math. Dokl., 26 (1982), 495–498 | MR | Zbl
[6] M. P. Kharlamov, “Ponizhenie poryadka v mekhanicheskikh sistemakh s simmetriei”, Mekh. tverd. tela, 8 (1976), 4–18 | MR
[7] S. P. Novikov, I. A. Ta\u]i manov, “Periodic extremals of many-valued or not-everywhere-positive functionals”, Soviet Math. Dokl., 29 (1984), 18–20 | MR | Zbl
[8] P. G. Grinevich, S. P. Novikov, “Nonselfintersecting magnetic orbits on the plane. Proof of the overthrowing of cycles principle”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Adv. Math. Sci., 27, Amer. Math. Soc., Providence, RI, 1995, 59–82 | DOI | MR | Zbl
[9] V. V. Kozlov, “Calculus of variations in the large and classical mechanics”, Russian Math. Surveys, 40:2 (1985), 37–71 | DOI | MR | Zbl
[10] V. V. Kozlov, “Zamknutye orbity i khaoticheskaya dinamika zaryada v periodicheskom elektromagnitnom pole”, Regul. Chaotic Dyn., 2:1 (1997), 3–12 | MR | Zbl
[11] C. C. Conley, E. Zehnder, “The Birkhoff–Lewis fixed point theorem and a conjecture of V. I. Arnold”, Invent. Math., 73:1 (1983), 33–49 | DOI | MR | Zbl
[12] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 2, Klassische Feldtheorie, 10., ber. Aufl., Akademie-Verlag, Berlin, 1987, xiv+481 pp. | MR | MR | Zbl | Zbl