Spinning tops and magnetic orbits
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1133-1141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of directions were initiated by the author and his students in their papers of 1981–1982. However, one of them, concerning the properties of closed orbits on the sphere $S^2$ and in the groups $S^3$ and $\operatorname{SO}_3$, has not been sufficiently developed. This paper revives the discussion of these questions, states unsolved problems, and explains what was regarded as fallacies in old papers. In general, magnetic orbits have been poorly discussed in the literature on dynamical systems and theoretical mechanics, but Grinevich has pointed out that in theoretical physics one encounters similar situations in the theory related to particle accelerators such as proton cyclotrons. It is interesting to look at Chap. III of Landau and Lifshitz's Theoretical physics, vol. 2, Field theory (translated into English as The classical theory of fields [12]), where mathematical relatives of our situations occur, but the physics is completely different and there are actual strong magnetic fields. Bibliography: 12 titles.
Keywords: spinning tops, magnetic orbits, self-intersections.
@article{RM_2020_75_6_a3,
     author = {S. P. Novikov},
     title = {Spinning tops and magnetic orbits},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1133--1141},
     year = {2020},
     volume = {75},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a3/}
}
TY  - JOUR
AU  - S. P. Novikov
TI  - Spinning tops and magnetic orbits
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 1133
EP  - 1141
VL  - 75
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a3/
LA  - en
ID  - RM_2020_75_6_a3
ER  - 
%0 Journal Article
%A S. P. Novikov
%T Spinning tops and magnetic orbits
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 1133-1141
%V 75
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2020_75_6_a3/
%G en
%F RM_2020_75_6_a3
S. P. Novikov. Spinning tops and magnetic orbits. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1133-1141. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a3/

[1] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984, 344 pp. | MR | Zbl

[2] S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory”, Soviet Math. Dokl., 24 (1981), 222–226 | MR | Zbl

[3] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[4] V. V. Kozlov, “The principle of least action and periodic solutions in problems of classical mechanics”, J. Appl. Math. Mech., 40:3 (1976), 363–370 | DOI | Zbl

[5] V. V. Kozlov, D. A. Onishchenko, “Nonintegrability of Kirchhoff's equations”, Soviet Math. Dokl., 26 (1982), 495–498 | MR | Zbl

[6] M. P. Kharlamov, “Ponizhenie poryadka v mekhanicheskikh sistemakh s simmetriei”, Mekh. tverd. tela, 8 (1976), 4–18 | MR

[7] S. P. Novikov, I. A. Ta\u]i manov, “Periodic extremals of many-valued or not-everywhere-positive functionals”, Soviet Math. Dokl., 29 (1984), 18–20 | MR | Zbl

[8] P. G. Grinevich, S. P. Novikov, “Nonselfintersecting magnetic orbits on the plane. Proof of the overthrowing of cycles principle”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Adv. Math. Sci., 27, Amer. Math. Soc., Providence, RI, 1995, 59–82 | DOI | MR | Zbl

[9] V. V. Kozlov, “Calculus of variations in the large and classical mechanics”, Russian Math. Surveys, 40:2 (1985), 37–71 | DOI | MR | Zbl

[10] V. V. Kozlov, “Zamknutye orbity i khaoticheskaya dinamika zaryada v periodicheskom elektromagnitnom pole”, Regul. Chaotic Dyn., 2:1 (1997), 3–12 | MR | Zbl

[11] C. C. Conley, E. Zehnder, “The Birkhoff–Lewis fixed point theorem and a conjecture of V. I. Arnold”, Invent. Math., 73:1 (1983), 33–49 | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 2, Klassische Feldtheorie, 10., ber. Aufl., Akademie-Verlag, Berlin, 1987, xiv+481 pp. | MR | MR | Zbl | Zbl