@article{RM_2020_75_6_a2,
author = {S. A. Molchanov and V. A. Panov},
title = {The {Dickman{\textendash}Goncharov} distribution},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1089--1132},
year = {2020},
volume = {75},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a2/}
}
S. A. Molchanov; V. A. Panov. The Dickman–Goncharov distribution. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1089-1132. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a2/
[1] A. Alhakim, S. Molchanov, “The density flatness phenomenon”, Statist. Probab. Lett., 152 (2019), 156–161 | DOI | MR | Zbl
[2] K. Alladi, “The Turán–Kubilius inequality for integers without large prime factors”, J. Reine Angew. Math., 1982:335 (1982), 180–196 | DOI | MR | Zbl
[3] Z. D. Bai, Sungchul Lee, M. D. Penrose, “Rooted edges of a minimal directed spanning tree on random points”, Adv. in Appl. Probab., 38:1 (2006), 1–30 | DOI | MR | Zbl
[4] G. Ben Arous, L. V. Bogachev, S. A. Molchanov, “Limit theorems for sums of random exponentials”, Probab. Theory Related Fields, 132:4 (2005), 579–612 | DOI | MR | Zbl
[5] A. G. Bhatt, R. Roy, “On a random directed spanning tree”, Adv. in Appl. Probab., 36:1 (2004), 19–42 | DOI | MR | Zbl
[6] P. Billingsley, “On the distribution of large prime divisors”, Period. Math. Hungar., 2:1-4 (1972), 283–289 | DOI | MR | Zbl
[7] A. Bovier, I. Kurkova, M. Löwe, “Fluctuations of the free energy in the REM and the $p$-spin SK models”, Ann. Probab., 30:2 (2002), 605–651 | DOI | MR | Zbl
[8] A. A. Bukhshtab, “O chislakh arifmeticheskoi progressii, u kotorykh vse prostye mnozhiteli maly po poryadku rosta”, Dokl. AN SSSR, 67 (1949), 5–8 | MR | Zbl
[9] S. Chatterjee, Sanchayan Sen, “Minimal spanning trees and Stein's method”, Ann. Appl. Probab., 27:3 (2017), 1588–1645 | DOI | MR | Zbl
[10] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC Financ. Math. Ser., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+535 pp. | DOI | MR | Zbl
[11] S. Covo, “On approximations of small jumps of subordinators with particular emphasis on a Dickman-type limit”, J. Appl. Probab., 46:3 (2009), 732–755 | DOI | MR | Zbl
[12] N. G. de Bruijn, “On the number of positive integers $\leq x $ and free of prime factors ${> y}$”, Nederl. Acad. Wetensch. Proc. Ser. A, 54, =Indag. Math., 13 (1951), 50–60 | DOI | MR | Zbl
[13] N. G. de Bruijn, “On the number of positive integers $\leq x$ and free of prime factors ${>y}$. II”, Nederl. Akad. Wetensch. Proc. Ser. A, 69, =Indag. Math., 28 (1966), 239–247 | DOI | MR | Zbl
[14] L. De Haan, S. I. Resnick, H. Rootzén, C. de Vries, “Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes”, Stochastic Process. Appl., 32:2 (1989), 213–224 | DOI | MR | Zbl
[15] G. Derfel, Yaqin Feng, S. Molchanov, “Probabilistic approach to a cell growth model”, Differential equations, mathematical physics, and applications: Selim Grigorievich Krein centennial, Contemp. Math., 734, Amer. Math. Soc., Providence, RI, 2019, 95–106 | DOI | MR | Zbl
[16] B. Derrida, “Random-energy model: limit of a family of disordered models”, Phys. Rev. Lett., 45:2 (1980), 79–82 | DOI | MR
[17] B. Derrida, “Random-energy model: an exactly solvable model of disordered systems”, Phys. Rev. B (3), 24:5 (1981), 2613–2626 | DOI | MR | Zbl
[18] L. Devroye, Non-uniform random variate generation, Springer-Verlag, New York, 1986, xvi+843 pp. | DOI | MR | Zbl
[19] K. Dickman, “On the frequency of numbers containing prime factors of a certain relative magnitude”, Ark. för Mat. A, 22 (1930), 10, 14 pp. | Zbl
[20] Dickman function, Encyclopedia of mathematics,\par, ed. U. Rehmann https://encyclopediaofmath.org/wiki/Dickman_function
[21] J. Diebolt, D. Guégan, “Tail behaviour of the stationary density of general non-linear autoregressive processes of order 1”, J. Appl. Probab., 30:2 (1993), 315–329 | DOI | MR | Zbl
[22] T. Eisele, “On a third-order phase transition”, Comm. Math. Phys., 90:1 (1983), 125–159 | DOI | MR | Zbl
[23] P. Embrechts, C. Goldie, “Perpetuities and random equations”, Asymptotic statistics (Prague, 1993), Contrib. Statist., Physica, Heidelberg, 1994, 75–86 | DOI | MR
[24] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N. Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp. | DOI | MR | Zbl
[25] P. Erdös, “On a family of symmetric Bernoulli convolutions”, Amer. J. Math., 61:4 (1939), 974–976 | DOI | MR | Zbl
[26] P. Erdös, “On the smoothness properties of a family Bernoulli convolutions”, Amer. J. Math., 62 (1940), 180–186 | DOI | MR | Zbl
[27] W. Feller, An introduction to probability theory and its applications, v. 1, 2nd ed., John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1957, xv+461 pp. | MR | Zbl | Zbl
[28] Shui Feng, The Poisson–Dirichlet distribution and related topics. Models and asymptotic behaviors, Probab. Appl. (N. Y.), Springer, Heidelberg, 2010, xiv+218 pp. | DOI | MR | Zbl
[29] V. Gončarov, “On the field of combinatory analysis”, Amer. Math. Soc. Transl. Ser. 2, 19, Amer. Math. Soc., Providence, RI, 1962, 1–46 | DOI | MR | MR | Zbl | Zbl
[30] M. Grabchak, S. A. Molchanov, “Limit theorems for random exponentials: the bounded support case”, Teoriya veroyatn. i ee primen., 63:4 (2018), 779–794 ; Theory Probab. Appl., 63:4 (2019), 634–647 | DOI | MR | Zbl | DOI
[31] A. Hildebrand, “Integers free of large prime factors and the Riemann hypothesis”, Mathematika, 31:2 (1984), 258–271 | DOI | MR | Zbl
[32] A. Hildebrand, “On the number of positive integers $\leq x$ and free of prime factors ${> y}$”, J. Number Theory, 22:3 (1986), 289–307 | DOI | MR | Zbl
[33] A. Hildebrand, G. Tenenbaum, “On integers free of large prime factors”, Trans. Amer. Math. Soc., 296:1 (1986), 265–290 | DOI | MR | Zbl
[34] A. Hildebrand, G. Tenenbaum, “Integers without large prime factors”, J. Théor. Nombres Bordeaux, 5:2 (1993), 411–484 | DOI | MR | Zbl
[35] M. Kac, Probability and related topics in physical sciences (Boulder, CO, 1957), Lectures in Appl. Math., I, Intersci. Publ., London–New York, 1959, xiii+266 pp. | MR | Zbl
[36] D. E. Knuth, L. Trabb Pardo, “Analysis of a simple factorization algorithm”, Theoret. Comput. Sci., 3:3 (1976/77), 321–348 | DOI | MR | Zbl
[37] V. D. Konakov, S. Menozzi, S. A. Molchanov, “Diffusion processes on solvable groups of upper triangular $2\times 2$ matrices and their approximation”, Dokl. Math., 84:1 (2011), 527–530 | DOI | MR | Zbl
[38] V. Konakov, S. Menozzi, S. Molchanov, “The Brownian motion on $\operatorname{Aff}(\mathbb R)$ and quasi-local theorems”, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., 739, Amer. Math. Soc., Providence, RI, 2019, 97–125 | DOI | MR | Zbl
[39] H. P. McKean, Jr., Stochastic integrals, Probab. Math. Statist., 5, Academic Press, New York, 1969, xiii+140 pp. | DOI | MR | MR | Zbl | Zbl
[40] S. Molchanov, V. Panov, “Limit theorems for the alloy-type random energy model”, Stochastics, 91:5 (2019), 754–772 | DOI | MR
[41] P. Moree, “Nicolaas Govert de Bruijn, the enchanter of friable integers”, Indag. Math. (N. S.), 24:4 (2013), 774–801 | DOI | MR | Zbl
[42] K. K. Norton, Numbers with small prime factors, and the least $k$th power non-residue, Mem. Amer. Math. Soc., 106, Amer. Math. Soc., Providence, RI, 1971, ii+106 pp. | DOI | MR | Zbl
[43] E. Olivieri, P. Picco, “On the existence of thermodynamics for the random energy model”, Comm. Math. Phys., 96:1 (1984), 125–144 | DOI | MR | Zbl
[44] M. D. Penrose, A. R. Wade, “Random minimal directed spanning trees and Dickman-type distributions”, Adv. in Appl. Probab., 36:3 (2004), 691–714 | DOI | MR | Zbl
[45] M. D. Penrose, A. R. Wade, “On the total length of the random minimal directed spanning tree”, Adv. in Appl. Probab., 38:2 (2006), 336–372 | DOI | MR | Zbl
[46] M. D. Penrose, A. R. Wade, “Limit theorems for random spatial drainage networks”, Adv. in Appl. Probab., 42:3 (2010), 659–688 | DOI | MR | Zbl
[47] Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, 39–65 | DOI | MR | Zbl
[48] Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231–239 | DOI | MR | Zbl
[49] Yu. V. Prohorov, Yu. A. Rozanov, Probability theory. Basic concepts. Limit theorems. Random processes, Grundlehren Math. Wiss., 157, Springer-Verlag, New York–Heidelberg, 1969, xi+401 pp. | MR | MR | Zbl | Zbl
[50] S. Ramanujan, The lost notebook and other unpublished papers, with an introduction by G. E. Andrews, Springer-Verlag, Berlin; Narosa Publ. House, New Delhi, 1988, xxv+419 pp. | Zbl
[51] V. Ramaswami, “On the number of positive integers less than $x$ and free of prime divisors greater than $x^{c}$”, Bull. Amer. Math. Soc., 55:12 (1949), 1122–1127 | DOI | MR | Zbl
[52] R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., s1-13:4 (1938), 242–247 | DOI | MR | Zbl
[53] I. Rodríguez-Iturbe, A. Rinaldo, Fractal river basins. Chance and self-organization, Cambridge Univ. Press, Cambridge, 2001, 570 pp.
[54] L. C. G. Rogers, D. Williams, Diffusions, Markov processes and martingales, v. 2, Cambridge Math. Lib., Itô calculus, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+480 pp. | DOI | MR | Zbl
[55] W. Schoutens, Lévy processes in finance. Pricing financial derivatives, John Wiley and Sons, Chichester, 2003, 200 pp.
[56] P. Seba, “Markov chain of distances between parked cars”, J. Phys. A, 41:12 (2008), 122003, 5 pp. | DOI | MR | Zbl
[57] B. Solomyak, “On the random series $\sum \pm\lambda^n$ (an Erdös problem)”, Ann. of Math. (2), 142:3 (1995), 611–625 | DOI | MR | Zbl
[58] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Transl. from the French, Grad. Stud. Math., 163, 3rd ed., Amer. Math. Soc., Providence, RI, 2015, xxiv+629 pp. | DOI | MR | Zbl
[59] A. M. Vershik, “The asymptotic distribution of factorizations of natural numbers into prime divisors”, Soviet Math. Dokl., 34 (1987), 57–61 | MR | Zbl
[60] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272 | DOI | MR | Zbl
[61] A. M. Vershik, A. A. Shmidt, “Limiting measures arising in the asymptotic theory of symmetric groups. I”, Theory Probab. Appl., 22:1 (1977), 70–85 | DOI | MR | Zbl
[62] A. M. Vershik, A. A. Shmidt, “Limit measures arising in the asymptotic theory of symmetric groups. II”, Theory Probab. Appl., 23:1 (1978), 36–49 | DOI | MR | Zbl