@article{RM_2020_75_6_a1,
author = {Yu. A. Kordyukov and I. A. Taimanov},
title = {Quasi-classical approximation for magnetic monopoles},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1067--1088},
year = {2020},
volume = {75},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a1/}
}
TY - JOUR AU - Yu. A. Kordyukov AU - I. A. Taimanov TI - Quasi-classical approximation for magnetic monopoles JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 1067 EP - 1088 VL - 75 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a1/ LA - en ID - RM_2020_75_6_a1 ER -
Yu. A. Kordyukov; I. A. Taimanov. Quasi-classical approximation for magnetic monopoles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1067-1088. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a1/
[1] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, “The asymptotic form of the lower Landau bands in a strong magnetic field”, Theoret. and Math. Phys., 131:2 (2002), 704–728 | DOI | DOI | MR | Zbl
[2] J. Brüning, R. V. Nekrasov, A. I. Shafarevich, “Quantization of periodic motions on compact surfaces of constant negative curvature in a magnetic field”, Math. Notes, 81:1 (2007), 28–36 | DOI | DOI | MR | Zbl
[3] P. A. M. Dirac, “Quantised singularities in the electromagnetic field”, Proc. Roy. Soc. London Ser. A, 133 (1931), 60–72 | DOI | Zbl
[4] P. A. M. Dirac, “The monopole concept”, Internat. J. Theoret. Phys., 17:4 (1978), 235–247 | DOI | MR
[5] M. V. Karasev, V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization., Transl. Math. Monogr., 119, Amer. Math. Soc., Providence, RI, 1993, xii+366 pp. | MR | MR | Zbl | Zbl
[6] V. R. Kogan, “The asymptotic form of the Laplace–Beltrami operator on the unit sphere $S^{n-1}$”, Radiophys. and Quantum Electronics, 12:11 (1969), 1306–1310 | DOI | MR
[7] Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Russian Math. Surveys, 74:2 (2019), 325–361 | DOI | DOI | MR | Zbl
[8] V. V. Kozlov, “The principle of least action and periodic solutions in problems of classical mechanics”, J. Appl. Math. Mech., 40:3 (1976), 363–370 | DOI | Zbl
[9] V. V. Kozlov, “Calculus of variations in the large and classical mechanics”, Russian Math. Surveys, 40:2 (1985), 37–71 | DOI | MR | Zbl
[10] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Études mathematiques, Dunod, Gauthier-Villars, Paris, 1972, xvi+384 pp. | Zbl
[11] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 296 pp. | MR | Zbl
[12] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[13] S. P. Novikov, I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207 | DOI | MR | Zbl
[14] H. Poincaré, “Remarques sur une expérience de M. Birkeland”, Compt. Rend. Acad. Sci., 123 (1896), 530–533
[15] Ya. M. Shnir, Magnetic monopoles, Texts Monogr. Phys., Springer-Verlag, Berlin, 2005, xviii+532 pp. | DOI | MR | Zbl
[16] I. A. Taimanov, “An example of jump from chaos to integrability in magnetic geodesic flows”, Math. Notes, 76:4 (2004), 587–589 | DOI | DOI | MR | Zbl
[17] Ig. Tamm, “Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles”, Z. Phys., 1931, no. 71, 141–150 | DOI | Zbl
[18] Tai Tsun Wu, Chen Ning Yang, “Dirac monopole without strings: monopole harmonics”, Nuclear Phys. B, 107:3 (1976), 365–380 | DOI | MR