Quasi-classical approximation for magnetic monopoles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1067-1088
Voir la notice de l'article provenant de la source Math-Net.Ru
A quasi-classical approximation is constructed to describe the eigenvalues of the magnetic Laplacian on a compact Riemannian manifold in the case when the magnetic field is given by a non-exact 2-form. For this, the multidimensional WKB method in the form of the Maslov canonical operator is applied. In this case, the canonical operator takes values in sections of a non-trivial line bundle. The constructed approximation is demonstrated for the example of the Dirac magnetic monopole on the two-dimensional sphere.
Bibliography: 18 titles.
Keywords:
quasi-classical approximation, magnetic Laplacian, magnetic monopole.
@article{RM_2020_75_6_a1,
author = {Yu. A. Kordyukov and I. A. Taimanov},
title = {Quasi-classical approximation for magnetic monopoles},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1067--1088},
publisher = {mathdoc},
volume = {75},
number = {6},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a1/}
}
TY - JOUR AU - Yu. A. Kordyukov AU - I. A. Taimanov TI - Quasi-classical approximation for magnetic monopoles JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 1067 EP - 1088 VL - 75 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a1/ LA - en ID - RM_2020_75_6_a1 ER -
Yu. A. Kordyukov; I. A. Taimanov. Quasi-classical approximation for magnetic monopoles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 1067-1088. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a1/