Iterated Laurent series over rings and the Contou-Carrère symbol
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 995-1066 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article contains a survey of a new algebro-geometric approach for working with iterated algebraic loop groups associated with iterated Laurent series over arbitrary commutative rings and its applications to the study of the higher-dimensional Contou-Carrère symbol. In addition to the survey, the article also contains new results related to this symbol. The higher-dimensional Contou-Carrère symbol arises naturally when one considers deformation of a flag of algebraic subvarieties of an algebraic variety. The non-triviality of the problem is due to the fact that, in the case $n>1$, for the group of invertible elements of the algebra of $n$-iterated Laurent series over a ring, no representation is known in the form of an ind-flat scheme over this ring. Therefore, essentially new algebro-geometric constructions, notions, and methods are required. As an application of the new methods used, a description of continuous homomorphisms between algebras of iterated Laurent series over a ring is given, and an invertibility criterion for such endomorphisms is found. It is shown that the higher-dimensional Contou-Carrère symbol, restricted to algebras over the field of rational numbers, is given by a natural explicit formula, and this symbol extends uniquely to all rings. An explicit formula is also given for the higher-dimensional Contou-Carrère symbol in the case of all rings. The connection with higher-dimensional class field theory is described. As a new result, it is shown that the higher-dimensional Contou-Carrère symbol has a universal property. Namely, if one fixes a torsion-free ring and considers a flat group scheme over this ring such that any two points of the scheme are contained in an affine open subset, then after restricting to algebras over the fixed ring, all morphisms from the $n$-iterated algebraic loop group of the Milnor $K$-group of degree $n+1$ to the above group scheme factor through the higher-dimensional Contou-Carrère symbol. Bibliography: 67 titles.
Keywords: iterated Laurent series over rings, Milnor $K$-group of a ring, higher-dimensional Witt pairing, group schemes.
Mots-clés : higher-dimensional Contou-Carrère symbol
@article{RM_2020_75_6_a0,
     author = {S. O. Gorchinskiy and D. V. Osipov},
     title = {Iterated {Laurent} series over rings and the {Contou-Carr\`ere} symbol},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {995--1066},
     year = {2020},
     volume = {75},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
AU  - D. V. Osipov
TI  - Iterated Laurent series over rings and the Contou-Carrère symbol
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 995
EP  - 1066
VL  - 75
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/
LA  - en
ID  - RM_2020_75_6_a0
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%A D. V. Osipov
%T Iterated Laurent series over rings and the Contou-Carrère symbol
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 995-1066
%V 75
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/
%G en
%F RM_2020_75_6_a0
S. O. Gorchinskiy; D. V. Osipov. Iterated Laurent series over rings and the Contou-Carrère symbol. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 995-1066. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/

[1] G. W. Anderson, F. Pablos Romo, “Simple proofs of classical explicit reciprocity laws on curves using determinant groupoids over an artinian local ring”, Comm. Algebra, 32:1 (2004), 79–102 | DOI | MR | Zbl

[2] M. Artin, B. Mazur, Etale homotopy, Lecture Notes in Math., 100, Springer-Verlag, Berlin–New York, 1969, iii+169 pp. | DOI | MR | Zbl

[3] A. A. Beilinson, “Higher regulators and values of $L$-functions of curves”, Funct. Anal. Appl., 14:2 (1980), 116–118 | DOI | MR | Zbl

[4] A. A. Beilinson, S. J. Bloch, H. Esnault, “$\varepsilon$-factors for Gauss–Manin determinants”, Mosc. Math. J., 2:3 (2002), 477–532 | DOI | MR | Zbl

[5] S. Bloch, “On the tangent space to Quillen K-theory”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 205–210 | DOI | MR | Zbl

[6] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl

[7] O. Braunling, M. Groechenig, J. Wolfson, A generalized Contou-Carrère symbol and its reciprocity laws in higher dimensions, 2015 (v1 – 2014), 55 pp., arXiv: 1410.3451v3

[8] O. Braunling, M. Groechenig, J. Wolfson, “The index map in algebraic $K$-theory”, Selecta Math. (N. S.), 24:2 (2018), 1039–1091 | DOI | MR | Zbl

[9] J.-L. Brylinski, D. A. McLaughlin, “Multidimensional reciprocity laws”, J. Reine Angew. Math., 1996:481 (1996), 125–147 | DOI | MR | Zbl

[10] B. Conrad, “A modern proof of Chevalley's theorem on algebraic groups”, J. Ramanujan Math. Soc., 17:1 (2002), 1–18 | MR | Zbl

[11] C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. R. Acad. Sci. Paris Sér. I Math., 318:8 (1994), 743–746 | MR | Zbl

[12] C. Contou-Carrère, “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106 | DOI | MR | Zbl

[13] P. Deligne, “Le symbole modéré”, Inst. Hautes Études Sci. Publ. Math., 73 (1991), 147–181 | DOI | MR | Zbl

[14] M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, xxvi+700 pp. | MR | Zbl

[15] M. Demazure, A. Grothendieck (eds.), Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), v. I, Lecture Notes in Math., 151, Prorpiétés générales des schémas en groupes, Springer-Verlag, Berlin–New York, 1970, xv+564 pp. | DOI | MR | Zbl

[16] M. Demazure, A. Grothendieck (eds.), Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), v. II, Lecture Notes in Math., 152, Groupes de type multiplicatif, et structure des schémas en groupes généraux, Springer-Verlag, Berlin–New York, 1970, ix+654 pp. | DOI | MR | Zbl

[17] J. J. Duistermaat, W. van der Kallen, “Constant terms in powers of a Laurent polynomial”, Indag. Math. (N. S.), 9:2 (1998), 221–231 | DOI | MR | Zbl

[18] H. Esnault, E. Viehweg, “Deligne–Beilinson cohomology”, Beilinson's conjectures on special values of $L$-functions, Perspect. Math., 4, Academic Press, Boston, MA, 1988, 43–91 | MR | Zbl

[19] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, with a foreword by I. R. Shafarevich, Transl. Math. Monogr., 121, 2nd ed., Amer. Math. Soc., Providence, RI, 2002, xii+345 pp. | DOI | MR | Zbl

[20] O. Gabber, Qing Liu, D. Lorenzini, “The index of an algebraic variety”, Invent. Math., 192:3 (2013), 567–626 | DOI | MR | Zbl

[21] S. O. Gorchinskiy, D. M. Krekov, “An explicit formula for the norm in the theory of fields of norms”, Russian Math. Surveys, 73:2 (2018), 369–371 | DOI | DOI | MR | Zbl

[22] S. O. Gorchinskiy, D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol”, Russian Math. Surveys, 70:1 (2015), 171–173 | DOI | DOI | MR | Zbl

[23] S. O. Gorchinskiy, D. V. Osipov, “Tangent space to Milnor $K$-groups of rings”, Proc. Steklov Inst. Math., 290, no. 1, 2015, 26–34 | DOI | DOI | MR | Zbl

[24] S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl

[25] S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl

[26] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl

[27] S. O. Gorchinskiy, D. V. Osipov, “The higher-dimensional Contou-Carrère symbol and commutative group schemes”, Russian Math. Surveys, 75:3 (2020), 572–574 | DOI | DOI | Zbl

[28] S. O. Gorchinskiy, D. N. Tyurin, “Relative Milnor $K$-groups and differential forms of split nilpotent extensions”, Izv. Math., 82:5 (2018), 880–913 | DOI | DOI | MR | Zbl

[29] D. Grayson, “Higher algebraic K-theory. II (after Daniel Quillen)”, Algebraic K-theory (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer, Berlin, 1976, 217–240 | DOI | MR | Zbl

[30] A. Grothendieck, “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV”, Inst. Hautes Études Sci. Publ. Math., 32 (1967), 1–361 | MR | Zbl

[31] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl

[32] M. Hazewinkel, Formal groups and applications, Pure Appl. Math., 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xxii+573 pp. | MR | Zbl

[33] R. Huber, “Continuous valuations”, Math. Z., 212:3 (1993), 455–477 | DOI | MR | Zbl

[34] D. B. Kaledin, “Witt vectors, commutative and non-commutative”, Russian Math. Surveys, 73:1 (2018), 1–30 | DOI | DOI | MR | Zbl

[35] M. Kapranov, É. Vasserot, “Formal loops. II. A local Riemann–Roch theorem for determinantal gerbes”, Ann. Sci. École Norm. Sup. (4), 40:1 (2007), 113–133 | DOI | MR | Zbl

[36] K. Kato, “A generalization of local class field theory by using $K$-groups. I”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:2 (1979), 303–376 | MR | Zbl

[37] K. Kato, “A generalization of local class field theory by using $K$-groups. II”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:3 (1980), 603–683 | MR | Zbl

[38] K. Kato, “Milnor $K$-theory and the Chow group of zero cycles”, Applications of algebraic K-theory to algebraic geometry and number theory, Part I (Boulder, CO, 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 241–253 | DOI | MR | Zbl

[39] M. Kerz, “The Gersten conjecture for Milnor $K$-theory”, Invent. Math., 175:1 (2009), 1–33 | DOI | MR | Zbl

[40] A. G. Khovanskii, “An analog of determinant related to Parshin–Kato theory and integer polytopes”, Funct. Anal. Appl., 40:2 (2006), 126–133 | DOI | DOI | MR | Zbl

[41] M. Kontsevich, Noncommutative identities, 2011, 10 pp., arXiv: 1109.2469v1

[42] Qing Liu, Algebraic geometry and arithmetic curves, Transl. from the French, Oxf. Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002, xvi+576 pp. | MR | Zbl

[43] V. G. Lomadze, “On residues in algebraic geometry”, Math. USSR-Izv., 19:3 (1982), 495–520 | DOI | MR | Zbl

[44] J. Morava, “An algebraic analog of the Virasoro group”, Czechoslovak J. Phys., 51:12 (2001), 1395–1400 | DOI | MR | Zbl

[45] M. Morrow, “$K_2$ of localisations of local rings”, J. Algebra, 399 (2014), 190–204 | DOI | MR | Zbl

[46] D. Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, NJ, 1966, xi+200 pp. | MR | Zbl | Zbl

[47] J. M. Muñoz Porras, F. J. Plaza Martín, “Automorphism group of $k((t))$: applications to the bosonic string”, Comm. Math. Phys., 216:3 (2001), 609–634 | DOI | MR | Zbl

[48] E. Musicantov, A. Yom Din, “Reciprocity laws and $K$-theory”, Ann. $K$-theory, 2:1 (2017), 27–46 | DOI | MR | Zbl

[49] Yu. P. Nesterenko, A. A. Suslin, “Homology of the full linear group over a local ring, and Milnor's $K$-theory”, Math. USSR-Izv., 34:1 (1990), 121–145 | DOI | MR | Zbl

[50] D. Osipov, To the multidimensional tame symbol, preprint 03-13, Humboldt Univ., Berlin, 2003, 27 pp. ; 2011, 27 pp., arXiv: http://edoc.hu-berlin.de/docviews/abstract.php?id=262041105.1362v1

[51] D. V. Osipov, “Arithmetic surfaces and adelic quotient groups”, Izv. Math., 82:4 (2018), 817–836 | DOI | DOI | MR | Zbl

[52] D. Osipov, Xinwen Zhu, “A categorical proof of the Parshin reciprocity laws on algebraic surfaces”, Algebra Number Theory, 5:3 (2011), 289–337 | DOI | MR | Zbl

[53] D. Osipov, Xinwen Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebraic Geom., 25:4 (2016), 703–774 | DOI | MR | Zbl

[54] A. Pál, “On the kernel and the image of the rigid analytic regulator in positive characteristic”, Publ. Res. Inst. Math. Sci., 46:2 (2010), 255–288 | DOI | MR | Zbl

[55] G. Pappas, M. Rapoport, “Twisted loop groups and their affine flag varieties”, Adv. Math., 219:1 (2008), 118–198 | DOI | MR | Zbl

[56] A. N. Parshin, “Polya klassov i algebraicheskaya $K$-teoriya”, UMN, 30:1(181) (1975), 253–254 | MR | Zbl

[57] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl

[58] A. N. Parshin, “Local class field theory”, Proc. Steklov Inst. Math., 165 (1985), 157–185 | MR | Zbl

[59] A. N. Parshin, “Galois cohomology and the Brauer group of local fields”, Proc. Steklov Inst. Math., 183 (1991), 191–201 | MR | Zbl

[60] V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118 | DOI | DOI | MR | Zbl

[61] P. Scholze, “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 245–313 | DOI | MR | Zbl

[62] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl | Zbl

[63] Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, v. 1, Lecture Notes in Math., 269, Théorie des topos, Springer-Verlag, Berlin–New York, 1972, xix+525 pp. | DOI | MR | Zbl

[64] R. W. Thomason, T. Trobaugh, “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–435 | DOI | MR | Zbl

[65] S. V. Vostokov, I. B. Zhukov, I. B. Fesenko, “On the theory of multidimensional local fields. Methods and constructions”, Leningrad Math. J., 2:4 (1991), 775–800 | MR | Zbl

[66] E. Witt, “Zyklische Körper und Algebren der Characteristik $p$ vom Grad $p^n$. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik $p^n$”, J. Reine Angew. Math., 1937:176 (1937), 126–140 | DOI | MR | Zbl

[67] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Astérisque, 208, Soc. Math. France, Paris, 1992, 127 pp. | MR | Zbl