Mots-clés : higher-dimensional Contou-Carrère symbol
@article{RM_2020_75_6_a0,
author = {S. O. Gorchinskiy and D. V. Osipov},
title = {Iterated {Laurent} series over rings and the {Contou-Carr\`ere} symbol},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {995--1066},
year = {2020},
volume = {75},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/}
}
TY - JOUR AU - S. O. Gorchinskiy AU - D. V. Osipov TI - Iterated Laurent series over rings and the Contou-Carrère symbol JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 995 EP - 1066 VL - 75 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/ LA - en ID - RM_2020_75_6_a0 ER -
S. O. Gorchinskiy; D. V. Osipov. Iterated Laurent series over rings and the Contou-Carrère symbol. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 6, pp. 995-1066. http://geodesic.mathdoc.fr/item/RM_2020_75_6_a0/
[1] G. W. Anderson, F. Pablos Romo, “Simple proofs of classical explicit reciprocity laws on curves using determinant groupoids over an artinian local ring”, Comm. Algebra, 32:1 (2004), 79–102 | DOI | MR | Zbl
[2] M. Artin, B. Mazur, Etale homotopy, Lecture Notes in Math., 100, Springer-Verlag, Berlin–New York, 1969, iii+169 pp. | DOI | MR | Zbl
[3] A. A. Beilinson, “Higher regulators and values of $L$-functions of curves”, Funct. Anal. Appl., 14:2 (1980), 116–118 | DOI | MR | Zbl
[4] A. A. Beilinson, S. J. Bloch, H. Esnault, “$\varepsilon$-factors for Gauss–Manin determinants”, Mosc. Math. J., 2:3 (2002), 477–532 | DOI | MR | Zbl
[5] S. Bloch, “On the tangent space to Quillen K-theory”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 205–210 | DOI | MR | Zbl
[6] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl
[7] O. Braunling, M. Groechenig, J. Wolfson, A generalized Contou-Carrère symbol and its reciprocity laws in higher dimensions, 2015 (v1 – 2014), 55 pp., arXiv: 1410.3451v3
[8] O. Braunling, M. Groechenig, J. Wolfson, “The index map in algebraic $K$-theory”, Selecta Math. (N. S.), 24:2 (2018), 1039–1091 | DOI | MR | Zbl
[9] J.-L. Brylinski, D. A. McLaughlin, “Multidimensional reciprocity laws”, J. Reine Angew. Math., 1996:481 (1996), 125–147 | DOI | MR | Zbl
[10] B. Conrad, “A modern proof of Chevalley's theorem on algebraic groups”, J. Ramanujan Math. Soc., 17:1 (2002), 1–18 | MR | Zbl
[11] C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. R. Acad. Sci. Paris Sér. I Math., 318:8 (1994), 743–746 | MR | Zbl
[12] C. Contou-Carrère, “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106 | DOI | MR | Zbl
[13] P. Deligne, “Le symbole modéré”, Inst. Hautes Études Sci. Publ. Math., 73 (1991), 147–181 | DOI | MR | Zbl
[14] M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, xxvi+700 pp. | MR | Zbl
[15] M. Demazure, A. Grothendieck (eds.), Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), v. I, Lecture Notes in Math., 151, Prorpiétés générales des schémas en groupes, Springer-Verlag, Berlin–New York, 1970, xv+564 pp. | DOI | MR | Zbl
[16] M. Demazure, A. Grothendieck (eds.), Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), v. II, Lecture Notes in Math., 152, Groupes de type multiplicatif, et structure des schémas en groupes généraux, Springer-Verlag, Berlin–New York, 1970, ix+654 pp. | DOI | MR | Zbl
[17] J. J. Duistermaat, W. van der Kallen, “Constant terms in powers of a Laurent polynomial”, Indag. Math. (N. S.), 9:2 (1998), 221–231 | DOI | MR | Zbl
[18] H. Esnault, E. Viehweg, “Deligne–Beilinson cohomology”, Beilinson's conjectures on special values of $L$-functions, Perspect. Math., 4, Academic Press, Boston, MA, 1988, 43–91 | MR | Zbl
[19] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, with a foreword by I. R. Shafarevich, Transl. Math. Monogr., 121, 2nd ed., Amer. Math. Soc., Providence, RI, 2002, xii+345 pp. | DOI | MR | Zbl
[20] O. Gabber, Qing Liu, D. Lorenzini, “The index of an algebraic variety”, Invent. Math., 192:3 (2013), 567–626 | DOI | MR | Zbl
[21] S. O. Gorchinskiy, D. M. Krekov, “An explicit formula for the norm in the theory of fields of norms”, Russian Math. Surveys, 73:2 (2018), 369–371 | DOI | DOI | MR | Zbl
[22] S. O. Gorchinskiy, D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol”, Russian Math. Surveys, 70:1 (2015), 171–173 | DOI | DOI | MR | Zbl
[23] S. O. Gorchinskiy, D. V. Osipov, “Tangent space to Milnor $K$-groups of rings”, Proc. Steklov Inst. Math., 290, no. 1, 2015, 26–34 | DOI | DOI | MR | Zbl
[24] S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl
[25] S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl
[26] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl
[27] S. O. Gorchinskiy, D. V. Osipov, “The higher-dimensional Contou-Carrère symbol and commutative group schemes”, Russian Math. Surveys, 75:3 (2020), 572–574 | DOI | DOI | Zbl
[28] S. O. Gorchinskiy, D. N. Tyurin, “Relative Milnor $K$-groups and differential forms of split nilpotent extensions”, Izv. Math., 82:5 (2018), 880–913 | DOI | DOI | MR | Zbl
[29] D. Grayson, “Higher algebraic K-theory. II (after Daniel Quillen)”, Algebraic K-theory (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer, Berlin, 1976, 217–240 | DOI | MR | Zbl
[30] A. Grothendieck, “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV”, Inst. Hautes Études Sci. Publ. Math., 32 (1967), 1–361 | MR | Zbl
[31] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl
[32] M. Hazewinkel, Formal groups and applications, Pure Appl. Math., 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xxii+573 pp. | MR | Zbl
[33] R. Huber, “Continuous valuations”, Math. Z., 212:3 (1993), 455–477 | DOI | MR | Zbl
[34] D. B. Kaledin, “Witt vectors, commutative and non-commutative”, Russian Math. Surveys, 73:1 (2018), 1–30 | DOI | DOI | MR | Zbl
[35] M. Kapranov, É. Vasserot, “Formal loops. II. A local Riemann–Roch theorem for determinantal gerbes”, Ann. Sci. École Norm. Sup. (4), 40:1 (2007), 113–133 | DOI | MR | Zbl
[36] K. Kato, “A generalization of local class field theory by using $K$-groups. I”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:2 (1979), 303–376 | MR | Zbl
[37] K. Kato, “A generalization of local class field theory by using $K$-groups. II”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:3 (1980), 603–683 | MR | Zbl
[38] K. Kato, “Milnor $K$-theory and the Chow group of zero cycles”, Applications of algebraic K-theory to algebraic geometry and number theory, Part I (Boulder, CO, 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 241–253 | DOI | MR | Zbl
[39] M. Kerz, “The Gersten conjecture for Milnor $K$-theory”, Invent. Math., 175:1 (2009), 1–33 | DOI | MR | Zbl
[40] A. G. Khovanskii, “An analog of determinant related to Parshin–Kato theory and integer polytopes”, Funct. Anal. Appl., 40:2 (2006), 126–133 | DOI | DOI | MR | Zbl
[41] M. Kontsevich, Noncommutative identities, 2011, 10 pp., arXiv: 1109.2469v1
[42] Qing Liu, Algebraic geometry and arithmetic curves, Transl. from the French, Oxf. Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002, xvi+576 pp. | MR | Zbl
[43] V. G. Lomadze, “On residues in algebraic geometry”, Math. USSR-Izv., 19:3 (1982), 495–520 | DOI | MR | Zbl
[44] J. Morava, “An algebraic analog of the Virasoro group”, Czechoslovak J. Phys., 51:12 (2001), 1395–1400 | DOI | MR | Zbl
[45] M. Morrow, “$K_2$ of localisations of local rings”, J. Algebra, 399 (2014), 190–204 | DOI | MR | Zbl
[46] D. Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, NJ, 1966, xi+200 pp. | MR | Zbl | Zbl
[47] J. M. Muñoz Porras, F. J. Plaza Martín, “Automorphism group of $k((t))$: applications to the bosonic string”, Comm. Math. Phys., 216:3 (2001), 609–634 | DOI | MR | Zbl
[48] E. Musicantov, A. Yom Din, “Reciprocity laws and $K$-theory”, Ann. $K$-theory, 2:1 (2017), 27–46 | DOI | MR | Zbl
[49] Yu. P. Nesterenko, A. A. Suslin, “Homology of the full linear group over a local ring, and Milnor's $K$-theory”, Math. USSR-Izv., 34:1 (1990), 121–145 | DOI | MR | Zbl
[50] D. Osipov, To the multidimensional tame symbol, preprint 03-13, Humboldt Univ., Berlin, 2003, 27 pp. ; 2011, 27 pp., arXiv: http://edoc.hu-berlin.de/docviews/abstract.php?id=262041105.1362v1
[51] D. V. Osipov, “Arithmetic surfaces and adelic quotient groups”, Izv. Math., 82:4 (2018), 817–836 | DOI | DOI | MR | Zbl
[52] D. Osipov, Xinwen Zhu, “A categorical proof of the Parshin reciprocity laws on algebraic surfaces”, Algebra Number Theory, 5:3 (2011), 289–337 | DOI | MR | Zbl
[53] D. Osipov, Xinwen Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebraic Geom., 25:4 (2016), 703–774 | DOI | MR | Zbl
[54] A. Pál, “On the kernel and the image of the rigid analytic regulator in positive characteristic”, Publ. Res. Inst. Math. Sci., 46:2 (2010), 255–288 | DOI | MR | Zbl
[55] G. Pappas, M. Rapoport, “Twisted loop groups and their affine flag varieties”, Adv. Math., 219:1 (2008), 118–198 | DOI | MR | Zbl
[56] A. N. Parshin, “Polya klassov i algebraicheskaya $K$-teoriya”, UMN, 30:1(181) (1975), 253–254 | MR | Zbl
[57] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl
[58] A. N. Parshin, “Local class field theory”, Proc. Steklov Inst. Math., 165 (1985), 157–185 | MR | Zbl
[59] A. N. Parshin, “Galois cohomology and the Brauer group of local fields”, Proc. Steklov Inst. Math., 183 (1991), 191–201 | MR | Zbl
[60] V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118 | DOI | DOI | MR | Zbl
[61] P. Scholze, “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 245–313 | DOI | MR | Zbl
[62] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl | Zbl
[63] Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, v. 1, Lecture Notes in Math., 269, Théorie des topos, Springer-Verlag, Berlin–New York, 1972, xix+525 pp. | DOI | MR | Zbl
[64] R. W. Thomason, T. Trobaugh, “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–435 | DOI | MR | Zbl
[65] S. V. Vostokov, I. B. Zhukov, I. B. Fesenko, “On the theory of multidimensional local fields. Methods and constructions”, Leningrad Math. J., 2:4 (1991), 775–800 | MR | Zbl
[66] E. Witt, “Zyklische Körper und Algebren der Characteristik $p$ vom Grad $p^n$. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik $p^n$”, J. Reine Angew. Math., 1937:176 (1937), 126–140 | DOI | MR | Zbl
[67] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Astérisque, 208, Soc. Math. France, Paris, 1992, 127 pp. | MR | Zbl