Quantisation ideals of nonabelian integrable systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 978-980 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2020_75_5_a8,
     author = {A. V. Mikhailov},
     title = {Quantisation ideals of nonabelian integrable systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {978--980},
     year = {2020},
     volume = {75},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a8/}
}
TY  - JOUR
AU  - A. V. Mikhailov
TI  - Quantisation ideals of nonabelian integrable systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 978
EP  - 980
VL  - 75
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_5_a8/
LA  - en
ID  - RM_2020_75_5_a8
ER  - 
%0 Journal Article
%A A. V. Mikhailov
%T Quantisation ideals of nonabelian integrable systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 978-980
%V 75
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2020_75_5_a8/
%G en
%F RM_2020_75_5_a8
A. V. Mikhailov. Quantisation ideals of nonabelian integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 978-980. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a8/

[1] P. Etingof, I. Gelfand, V. Retakh, Math. Res. Lett., 5:1-2 (1998), 1–12 | DOI | MR | Zbl

[2] A. V. Mikhailov, V. V. Sokolov, Comm. Math. Phys., 211:1 (2000), 231–251 | DOI | MR | Zbl

[3] O. I. Bogoyavlenskii, UMN, 46:3(279) (1991), 3–48 | DOI | MR | Zbl