@article{RM_2020_75_5_a5,
author = {R.-R. Zhang and M. E. Zhukovskii and M. Isaev and I. V. Rodionov},
title = {Extreme value theory for triangular arrays of dependent random variables},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {968--970},
year = {2020},
volume = {75},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a5/}
}
TY - JOUR AU - R.-R. Zhang AU - M. E. Zhukovskii AU - M. Isaev AU - I. V. Rodionov TI - Extreme value theory for triangular arrays of dependent random variables JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 968 EP - 970 VL - 75 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_5_a5/ LA - en ID - RM_2020_75_5_a5 ER -
%0 Journal Article %A R.-R. Zhang %A M. E. Zhukovskii %A M. Isaev %A I. V. Rodionov %T Extreme value theory for triangular arrays of dependent random variables %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 968-970 %V 75 %N 5 %U http://geodesic.mathdoc.fr/item/RM_2020_75_5_a5/ %G en %F RM_2020_75_5_a5
R.-R. Zhang; M. E. Zhukovskii; M. Isaev; I. V. Rodionov. Extreme value theory for triangular arrays of dependent random variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 968-970. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a5/
[1] B. Gnedenko, Ann. of Math. (2), 44 (1943), 423–453 | DOI | MR | Zbl
[2] M. R. Leadbetter, Z. Wahrscheinlichkeitstheor. verw. Geb., 28 (1973/74), 289–303 | DOI | MR | Zbl
[3] J. Hüsler, J. Appl. Probab., 23:4 (1986), 937–950 | DOI | MR | Zbl
[4] L. Pereira, H. Ferreira, J. Appl. Probab., 43:3 (2006), 884–891 | DOI | MR | Zbl
[5] E. Vl. Bulinskaya, UMN, 74:3(447) (2019), 187–189 | DOI | DOI
[6] J. Galambos, Ann. Math. Statist., 43:2 (1972), 516–521 | DOI | MR | Zbl
[7] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp. | MR | MR | Zbl | Zbl
[8] S. Janson, T. Łuczak, A. Ruciński, Random graphs' 87 (Poznań, 1987), Wiley, Chichester, 1990, 73–87 | MR | Zbl
[9] A. Dubickas, Statist. Probab. Lett., 78:17 (2008), 2839–2843 | DOI | MR | Zbl