Ramsey theory in the $n$-space with Chebyshev metric
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 965-967 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2020_75_5_a4,
     author = {A. B. Kupavskii and A. A. Sagdeev},
     title = {Ramsey theory in the $n$-space with {Chebyshev} metric},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {965--967},
     year = {2020},
     volume = {75},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a4/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. A. Sagdeev
TI  - Ramsey theory in the $n$-space with Chebyshev metric
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 965
EP  - 967
VL  - 75
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_5_a4/
LA  - en
ID  - RM_2020_75_5_a4
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. A. Sagdeev
%T Ramsey theory in the $n$-space with Chebyshev metric
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 965-967
%V 75
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2020_75_5_a4/
%G en
%F RM_2020_75_5_a4
A. B. Kupavskii; A. A. Sagdeev. Ramsey theory in the $n$-space with Chebyshev metric. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 965-967. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a4/

[1] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey theory, Wiley Sons, Inc., New York, 1990, xii+196 pp. | MR | Zbl

[2] A. M. Raigorodskii, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460 | DOI | MR | Zbl

[3] P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, E. G. Straus, J. Combin. Theory Ser. A, 14:3 (1973), 341–363 | DOI | MR | Zbl

[4] P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, E. G. Straus, Infinite and finite sets (Keszthely, 1973), Colloq. Math. Soc. János Bolyai, 10, North-Holland, Amsterdam, 1975, 529–557, 559–583 | MR | MR | Zbl

[5] I. Leader, P. A. Russell, M. Walters, J. Combin. Theory Ser. A., 119:2 (2012), 382–396 | DOI | MR | Zbl

[6] I. Kříž, Proc. Amer. Math. Soc., 112:3 (1991), 899–907 | DOI | MR | Zbl

[7] P. Frankl, V. Rödl, J. Amer. Math. Soc., 3:1 (1990), 1–7 | DOI | MR | Zbl

[8] A. A. Sagdeev, Probl. peredachi inform., 54:4 (2018), 82–109 | DOI | MR | Zbl

[9] A. A. Sagdeev, Probl. peredachi inform., 55:4 (2019), 86–106 | DOI | Zbl

[10] A. A. Sagdeev, A. M. Raigorodskii, Acta Math. Univ. Comenian. (N. S.), 88:3 (2019), 1029–1033 | MR

[11] E. Naslund, Monochromatic equilateral triangles in the unit distance graph, 2020 (v1 – 2019), 4 pp., arXiv: 1909.09856