Mots-clés : Teichmüller spaces, Poisson structure
@article{RM_2020_75_5_a3,
author = {L. O. Chekhov},
title = {Fenchel{\textendash}Nielsen coordinates and {Goldman} brackets},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {929--964},
year = {2020},
volume = {75},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a3/}
}
L. O. Chekhov. Fenchel–Nielsen coordinates and Goldman brackets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 929-964. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a3/
[1] D. G. L. Allegretti, “Laminations from the symplectic double”, Geom. Dedicata, 199 (2019), 27–86 ; (2014 (v3 – 2016)), 64 pp., arXiv: 1410.3035v1 | DOI | MR | Zbl
[2] A. Berenstein, A. Zelevinsky, “Quantum cluster algebras”, Adv. Math., 195:2 (2005), 405–455 ; (2004), 41 pp., arXiv: math/0404446 | DOI | MR | Zbl
[3] M. Bertola, D. Korotkin, Extended Goldman symplectic structure in Fock–Goncharov coordinates, 2020 (v1 – 2019), 32 pp., arXiv: 1910.06744
[4] F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math. (6), 5:2 (1996), 233–297 | DOI | MR | Zbl
[5] V. M. Buchstaber, A. P. Veselov, “Conway topograph, $\operatorname{PGL}_2({\mathbb Z})$-dynamics and two-valued groups”, Russian Math. Surveys, 74:3 (2019), 387–430 | DOI | DOI | MR | Zbl
[6] P. Buser, Geometry and spectra of compact Riemann surfaces, Progr. Math., 106, Birkhäuser Boston, Inc., Boston, MA, 1992, xiv+454 pp. | MR | Zbl
[7] L. O. Chekhov, “Symplectic structures on Teichmüller spaces $\mathfrak T_{g,s,n}$ and cluster algebras”, Proc. Steklov Inst. Math., 309 (2020), 87–96 | DOI | DOI | MR | Zbl
[8] L. Chekhov, M. Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras”, Nonlinearity, 31:1 (2018), 54–107 ; (2016 (v1 – 2015)), 44 pp., arXiv: 1509.07044 | DOI | MR | Zbl
[9] L. O. Chekhov, M. Mazzocco, V. N. Rubtsov, “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not. IMRN, 2017:24 (2017), 7639–7691 | DOI | MR | Zbl
[10] L. Chekhov, M. Mazzocco, V. Rubtsov, “Algebras of quantum monodromy data and character varieties”, Geometry and physics, A festschrift in honour of Nigel Hitchin, v. 1, Oxford Univ. Press, Oxford, 2018, 39–68 ; Algebras of quantum monodromy data and decorated character varieties, 2017, 22 pp., arXiv: 1705.01447 | DOI | MR | Zbl
[11] L. O. Chekhov, R. C. Penner, “Introduction to quantum Thurston theory”, Russian Math. Surveys, 58:6 (2003), 1141–1183 | DOI | DOI | MR | Zbl
[12] L. Chekhov, M. Shapiro, Darboux coordinates for symplectic groupoid and cluster algebras, 2020, 41 pp., arXiv: 2003.07499
[13] L. Chekhov, M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not. IMRN, 2014:10 (2014), 2746–2772 | DOI | MR | Zbl
[14] N. Do, P. Norbury, “Weil–Petersson volumes and cone surfaces”, Geom. Dedicata, 141 (2009), 93–107 ; (2006), 14 pp., arXiv: math/0603406 | DOI | MR | Zbl
[15] B. Eynard, N. Orantin, Weil–Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models, 2007, 9 pp., arXiv: 0705.3600
[16] L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254 | DOI | MR | Zbl
[17] V. V. Fock, Description of moduli space of projective structures via fat graphs, 1994 (v1 – 1993), 17 pp., arXiv: hep-th/9312193
[18] V. V. Fock, Dual Teichmüller spaces, 1998 (v1 – 1997), 32 pp., arXiv: dg-ga/9702018v3
[19] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | DOI | MR | Zbl
[20] V. V. Fock, L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163 | MR | Zbl
[21] V. Fock, A. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211 ; (2006 (v1 – 2003)), 220 pp., arXiv: math.AG/0311149 v4 | DOI | MR | Zbl
[22] V. V. Fock, A. A. Rosly, “Moduli space of flat connections as a Poisson manifold”, Advances in quantum field theory and statistical mechanics: 2nd Italian–Russian collaboration (Como, 1996), Internat. J. Modern Phys. B, 11:26-27 (1997), 3195–3206 | DOI | MR | Zbl
[23] S. Fomin, M. Shapiro, D. Thurston, “Cluster algebras and triangulated surfaces. I. Cluster complexes”, Acta Math., 201:1 (2008), 83–146 | DOI | MR | Zbl
[24] S. Fomin, D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda lengths, Mem. Amer. Math. Soc., 225, no. 1223, Amer. Math. Soc., Providence, RI, 2018, v+97 pp. ; 2018 (v1 – 2012), 99 pp., arXiv: 1210.5569 | DOI | MR | Zbl
[25] S. Fomin, A. Zelevinsky, “Cluster algebras I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl
[26] S. Fomin, A. Zelevinsky, “Cluster algebra. II: Finite type classification”, Invent. Math., 154:1 (2003), 63–121 | DOI | MR | Zbl
[27] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl
[28] L. Hollands, O. Kidwai, “Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials”, Adv. Theor. Math. Phys., 22:7 (2018), 1713–1822 ; (2017), 91 pp., arXiv: 1710.04438 | DOI | MR
[29] Yi Huang, Zhe Sun, McShane identities for higher Teichmüller theory and the Goncharov–Shen potential, 2020 (v1 – 2019), 107 pp., arXiv: 1901.02032
[30] R. M. Kashaev, “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 ; (1997), 11 pp., arXiv: q-alg/9705021 | DOI | MR | Zbl
[31] R. M. Kaufmann, R. C. Penner, “Closed/open string diagrammatics”, Nuclear Phys. B, 748:3 (2006), 335–379 | DOI | MR | Zbl
[32] F. Labourie, G. McShane, “Cross ratios and identities for higher Teichmüller–Thurston theory”, Duke Math. J., 149:2 (2009), 279–345 | DOI | MR | Zbl
[33] G. McShane, A remarkable identity for lengths of curves, Ph.D. thesis, Univ. of Warwick, Coventry, 1991, iii+28 pp. http://wrap.warwick.ac.uk/4008/ | MR
[34] G. McShane, “Simple geodesics and a series constant over Teichmüller space”, Invent. Math., 132:3 (1998), 607–632 | DOI | MR | Zbl
[35] G. McShane, Length series on Teichmüller space, 2004, 16 pp., arXiv: math/0403041
[36] M. Mirzakhani, “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167:1 (2007), 179–222 | DOI | MR | Zbl
[37] M. Mirzakhani, “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20:1 (2007), 1–23 | DOI | MR | Zbl
[38] S. Morier-Genoud, V. Ovsienko, “$q$-deformed rationals and $q$-continued fractions”, Forum Math. Sigma, 8 (2020), e13, 55 pp. ; (2020 (v1 – 2018)), 40 pp., arXiv: 1812.00170 | DOI | MR | Zbl
[39] M. Mulase, B. Safnuk, “Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy”, Indian J. Math., 50:1 (2008), 189–228 ; (2006), 21 pp., arXiv: math/0601194 | MR | Zbl
[40] G. Musiker, R. Schiffler, L. Williams, “Positivity for cluster algebras from surfaces”, Adv. Math., 227:6 (2011), 2241–2308 | DOI | MR | Zbl
[41] G. Musiker, R. Schiffler, L. Williams, “Bases for cluster algebras from surfaces”, Compositio Math., 149:2 (2013), 217–263 ; (2011), 53 pp., arXiv: 1110.4364 | DOI | MR | Zbl
[42] G. Musiker, L. Williams, “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not. IMRN, 2013:13 (2013), 2891–2944 | DOI | MR | Zbl
[43] N. Nekrasov, A. Rosly, S. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93 ; (2013 (v1 – 2011)), 25 pp., arXiv: 1103.3919 | DOI | MR
[44] R. C. Penner, “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–339 | DOI | MR | Zbl
[45] R. C. Penner, “Weil–Petersson volumes”, J. Differential Geom., 35:3 (1992), 559–608 | DOI | MR | Zbl
[46] G. Schrader, A. Shapiro, “A cluster realization of $U_q(\mathfrak{sl}_\mathfrak{n})$ from quantum character varieties”, Invent. Math., 216:3 (2019), 799–846 | DOI | MR | Zbl
[47] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint, 1984; 1998, 53 pp., arXiv: math.GT/9801039
[48] S. Wolpert, “The Fenchel–Nielsen deformation”, Ann. of Math. (2), 115:3 (1982), 501–528 | DOI | MR | Zbl
[49] S. Wolpert, “On the symplectic geometry of deformations of a hyperbolic surface”, Ann. of Math. (2), 117:2 (1983), 207–234 | DOI | MR | Zbl