Fenchel–Nielsen coordinates and Goldman brackets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 929-964 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is explicitly shown that the Poisson bracket on the set of shear coordinates defined by V. V. Fock in 1997 induces the Fenchel–Nielsen bracket on the set of gluing parameters (length and twist parameters) for pair-of-pants decompositions of Riemann surfaces $\Sigma_{g,s}$ with holes. These structures are generalized to the case of Riemann surfaces $\Sigma_{g,s,n}$ with holes and bordered cusps. Bibliography: 49 titles.
Keywords: Darboux coordinates, geodesics.
Mots-clés : Teichmüller spaces, Poisson structure
@article{RM_2020_75_5_a3,
     author = {L. O. Chekhov},
     title = {Fenchel{\textendash}Nielsen coordinates and {Goldman} brackets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {929--964},
     year = {2020},
     volume = {75},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a3/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - Fenchel–Nielsen coordinates and Goldman brackets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 929
EP  - 964
VL  - 75
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_5_a3/
LA  - en
ID  - RM_2020_75_5_a3
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T Fenchel–Nielsen coordinates and Goldman brackets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 929-964
%V 75
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2020_75_5_a3/
%G en
%F RM_2020_75_5_a3
L. O. Chekhov. Fenchel–Nielsen coordinates and Goldman brackets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 929-964. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a3/

[1] D. G. L. Allegretti, “Laminations from the symplectic double”, Geom. Dedicata, 199 (2019), 27–86 ; (2014 (v3 – 2016)), 64 pp., arXiv: 1410.3035v1 | DOI | MR | Zbl

[2] A. Berenstein, A. Zelevinsky, “Quantum cluster algebras”, Adv. Math., 195:2 (2005), 405–455 ; (2004), 41 pp., arXiv: math/0404446 | DOI | MR | Zbl

[3] M. Bertola, D. Korotkin, Extended Goldman symplectic structure in Fock–Goncharov coordinates, 2020 (v1 – 2019), 32 pp., arXiv: 1910.06744

[4] F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math. (6), 5:2 (1996), 233–297 | DOI | MR | Zbl

[5] V. M. Buchstaber, A. P. Veselov, “Conway topograph, $\operatorname{PGL}_2({\mathbb Z})$-dynamics and two-valued groups”, Russian Math. Surveys, 74:3 (2019), 387–430 | DOI | DOI | MR | Zbl

[6] P. Buser, Geometry and spectra of compact Riemann surfaces, Progr. Math., 106, Birkhäuser Boston, Inc., Boston, MA, 1992, xiv+454 pp. | MR | Zbl

[7] L. O. Chekhov, “Symplectic structures on Teichmüller spaces $\mathfrak T_{g,s,n}$ and cluster algebras”, Proc. Steklov Inst. Math., 309 (2020), 87–96 | DOI | DOI | MR | Zbl

[8] L. Chekhov, M. Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras”, Nonlinearity, 31:1 (2018), 54–107 ; (2016 (v1 – 2015)), 44 pp., arXiv: 1509.07044 | DOI | MR | Zbl

[9] L. O. Chekhov, M. Mazzocco, V. N. Rubtsov, “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not. IMRN, 2017:24 (2017), 7639–7691 | DOI | MR | Zbl

[10] L. Chekhov, M. Mazzocco, V. Rubtsov, “Algebras of quantum monodromy data and character varieties”, Geometry and physics, A festschrift in honour of Nigel Hitchin, v. 1, Oxford Univ. Press, Oxford, 2018, 39–68 ; Algebras of quantum monodromy data and decorated character varieties, 2017, 22 pp., arXiv: 1705.01447 | DOI | MR | Zbl

[11] L. O. Chekhov, R. C. Penner, “Introduction to quantum Thurston theory”, Russian Math. Surveys, 58:6 (2003), 1141–1183 | DOI | DOI | MR | Zbl

[12] L. Chekhov, M. Shapiro, Darboux coordinates for symplectic groupoid and cluster algebras, 2020, 41 pp., arXiv: 2003.07499

[13] L. Chekhov, M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not. IMRN, 2014:10 (2014), 2746–2772 | DOI | MR | Zbl

[14] N. Do, P. Norbury, “Weil–Petersson volumes and cone surfaces”, Geom. Dedicata, 141 (2009), 93–107 ; (2006), 14 pp., arXiv: math/0603406 | DOI | MR | Zbl

[15] B. Eynard, N. Orantin, Weil–Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models, 2007, 9 pp., arXiv: 0705.3600

[16] L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254 | DOI | MR | Zbl

[17] V. V. Fock, Description of moduli space of projective structures via fat graphs, 1994 (v1 – 1993), 17 pp., arXiv: hep-th/9312193

[18] V. V. Fock, Dual Teichmüller spaces, 1998 (v1 – 1997), 32 pp., arXiv: dg-ga/9702018v3

[19] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | DOI | MR | Zbl

[20] V. V. Fock, L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163 | MR | Zbl

[21] V. Fock, A. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211 ; (2006 (v1 – 2003)), 220 pp., arXiv: math.AG/0311149 v4 | DOI | MR | Zbl

[22] V. V. Fock, A. A. Rosly, “Moduli space of flat connections as a Poisson manifold”, Advances in quantum field theory and statistical mechanics: 2nd Italian–Russian collaboration (Como, 1996), Internat. J. Modern Phys. B, 11:26-27 (1997), 3195–3206 | DOI | MR | Zbl

[23] S. Fomin, M. Shapiro, D. Thurston, “Cluster algebras and triangulated surfaces. I. Cluster complexes”, Acta Math., 201:1 (2008), 83–146 | DOI | MR | Zbl

[24] S. Fomin, D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda lengths, Mem. Amer. Math. Soc., 225, no. 1223, Amer. Math. Soc., Providence, RI, 2018, v+97 pp. ; 2018 (v1 – 2012), 99 pp., arXiv: 1210.5569 | DOI | MR | Zbl

[25] S. Fomin, A. Zelevinsky, “Cluster algebras I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl

[26] S. Fomin, A. Zelevinsky, “Cluster algebra. II: Finite type classification”, Invent. Math., 154:1 (2003), 63–121 | DOI | MR | Zbl

[27] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl

[28] L. Hollands, O. Kidwai, “Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials”, Adv. Theor. Math. Phys., 22:7 (2018), 1713–1822 ; (2017), 91 pp., arXiv: 1710.04438 | DOI | MR

[29] Yi Huang, Zhe Sun, McShane identities for higher Teichmüller theory and the Goncharov–Shen potential, 2020 (v1 – 2019), 107 pp., arXiv: 1901.02032

[30] R. M. Kashaev, “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 ; (1997), 11 pp., arXiv: q-alg/9705021 | DOI | MR | Zbl

[31] R. M. Kaufmann, R. C. Penner, “Closed/open string diagrammatics”, Nuclear Phys. B, 748:3 (2006), 335–379 | DOI | MR | Zbl

[32] F. Labourie, G. McShane, “Cross ratios and identities for higher Teichmüller–Thurston theory”, Duke Math. J., 149:2 (2009), 279–345 | DOI | MR | Zbl

[33] G. McShane, A remarkable identity for lengths of curves, Ph.D. thesis, Univ. of Warwick, Coventry, 1991, iii+28 pp. http://wrap.warwick.ac.uk/4008/ | MR

[34] G. McShane, “Simple geodesics and a series constant over Teichmüller space”, Invent. Math., 132:3 (1998), 607–632 | DOI | MR | Zbl

[35] G. McShane, Length series on Teichmüller space, 2004, 16 pp., arXiv: math/0403041

[36] M. Mirzakhani, “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167:1 (2007), 179–222 | DOI | MR | Zbl

[37] M. Mirzakhani, “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20:1 (2007), 1–23 | DOI | MR | Zbl

[38] S. Morier-Genoud, V. Ovsienko, “$q$-deformed rationals and $q$-continued fractions”, Forum Math. Sigma, 8 (2020), e13, 55 pp. ; (2020 (v1 – 2018)), 40 pp., arXiv: 1812.00170 | DOI | MR | Zbl

[39] M. Mulase, B. Safnuk, “Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy”, Indian J. Math., 50:1 (2008), 189–228 ; (2006), 21 pp., arXiv: math/0601194 | MR | Zbl

[40] G. Musiker, R. Schiffler, L. Williams, “Positivity for cluster algebras from surfaces”, Adv. Math., 227:6 (2011), 2241–2308 | DOI | MR | Zbl

[41] G. Musiker, R. Schiffler, L. Williams, “Bases for cluster algebras from surfaces”, Compositio Math., 149:2 (2013), 217–263 ; (2011), 53 pp., arXiv: 1110.4364 | DOI | MR | Zbl

[42] G. Musiker, L. Williams, “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not. IMRN, 2013:13 (2013), 2891–2944 | DOI | MR | Zbl

[43] N. Nekrasov, A. Rosly, S. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93 ; (2013 (v1 – 2011)), 25 pp., arXiv: 1103.3919 | DOI | MR

[44] R. C. Penner, “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–339 | DOI | MR | Zbl

[45] R. C. Penner, “Weil–Petersson volumes”, J. Differential Geom., 35:3 (1992), 559–608 | DOI | MR | Zbl

[46] G. Schrader, A. Shapiro, “A cluster realization of $U_q(\mathfrak{sl}_\mathfrak{n})$ from quantum character varieties”, Invent. Math., 216:3 (2019), 799–846 | DOI | MR | Zbl

[47] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint, 1984; 1998, 53 pp., arXiv: math.GT/9801039

[48] S. Wolpert, “The Fenchel–Nielsen deformation”, Ann. of Math. (2), 115:3 (1982), 501–528 | DOI | MR | Zbl

[49] S. Wolpert, “On the symplectic geometry of deformations of a hyperbolic surface”, Ann. of Math. (2), 117:2 (1983), 207–234 | DOI | MR | Zbl