Yang--Baxter algebras, convolution algebras, and Grassmannians
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 791-842

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper surveys a new actively developing direction in contemporary mathematics which connects quantum integrable models with the Schubert calculus for quiver varieties: there is a purely geometric construction of solutions to the Yang–Baxter equation and their associated Yang–Baxter algebras which play a central role in quantum integrable systems and exactly solvable (integrable) lattice models in statistical physics. A simple but explicit example is given using the classical geometry of Grassmannians in order to explain some of the main ideas. The degenerate five-vertex limit of the asymmetric six-vertex model is considered, and its associated Yang–Baxter algebra is identified with a convolution algebra arising from the equivariant Schubert calculus of Grassmannians. It is also shown how our methods can be used to construct quotients of the universal enveloping algebra of the current algebra $\mathfrak{gl}_2[t]$ (so-called Schur-type algebras) acting on the tensor product of copies of its evaluation representation $\mathbb{C}^2[t]$. Finally, our construction is connected with the cohomological Hall algebra for the $A_1$-quiver. Bibliography: 125 titles.
Keywords: quantum integrable systems, quiver varieties
Mots-clés : quantum cohomologies.
@article{RM_2020_75_5_a0,
     author = {V. G. Gorbunov and C. Korff and C. Stroppel},
     title = {Yang--Baxter algebras, convolution algebras, and {Grassmannians}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {791--842},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/}
}
TY  - JOUR
AU  - V. G. Gorbunov
AU  - C. Korff
AU  - C. Stroppel
TI  - Yang--Baxter algebras, convolution algebras, and Grassmannians
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 791
EP  - 842
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/
LA  - en
ID  - RM_2020_75_5_a0
ER  - 
%0 Journal Article
%A V. G. Gorbunov
%A C. Korff
%A C. Stroppel
%T Yang--Baxter algebras, convolution algebras, and Grassmannians
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 791-842
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/
%G en
%F RM_2020_75_5_a0
V. G. Gorbunov; C. Korff; C. Stroppel. Yang--Baxter algebras, convolution algebras, and Grassmannians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 791-842. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/