Yang–Baxter algebras, convolution algebras, and Grassmannians
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 791-842 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper surveys a new actively developing direction in contemporary mathematics which connects quantum integrable models with the Schubert calculus for quiver varieties: there is a purely geometric construction of solutions to the Yang–Baxter equation and their associated Yang–Baxter algebras which play a central role in quantum integrable systems and exactly solvable (integrable) lattice models in statistical physics. A simple but explicit example is given using the classical geometry of Grassmannians in order to explain some of the main ideas. The degenerate five-vertex limit of the asymmetric six-vertex model is considered, and its associated Yang–Baxter algebra is identified with a convolution algebra arising from the equivariant Schubert calculus of Grassmannians. It is also shown how our methods can be used to construct quotients of the universal enveloping algebra of the current algebra $\mathfrak{gl}_2[t]$ (so-called Schur-type algebras) acting on the tensor product of copies of its evaluation representation $\mathbb{C}^2[t]$. Finally, our construction is connected with the cohomological Hall algebra for the $A_1$-quiver. Bibliography: 125 titles.
Keywords: quantum integrable systems, quiver varieties
Mots-clés : quantum cohomologies.
@article{RM_2020_75_5_a0,
     author = {V. G. Gorbunov and C. Korff and C. Stroppel},
     title = {Yang{\textendash}Baxter algebras, convolution algebras, and {Grassmannians}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {791--842},
     year = {2020},
     volume = {75},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/}
}
TY  - JOUR
AU  - V. G. Gorbunov
AU  - C. Korff
AU  - C. Stroppel
TI  - Yang–Baxter algebras, convolution algebras, and Grassmannians
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 791
EP  - 842
VL  - 75
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/
LA  - en
ID  - RM_2020_75_5_a0
ER  - 
%0 Journal Article
%A V. G. Gorbunov
%A C. Korff
%A C. Stroppel
%T Yang–Baxter algebras, convolution algebras, and Grassmannians
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 791-842
%V 75
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/
%G en
%F RM_2020_75_5_a0
V. G. Gorbunov; C. Korff; C. Stroppel. Yang–Baxter algebras, convolution algebras, and Grassmannians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 5, pp. 791-842. http://geodesic.mathdoc.fr/item/RM_2020_75_5_a0/

[1] M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981, x+425 pp. | MR | MR | Zbl | Zbl

[2] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl

[3] M. Aganagic, A. Okounkov, “Elliptic stable envelopes”, J. Amer. Math. Soc. (to appear); 2020 (v1 – 2016), 68 pp., arXiv: 1604.00423

[4] D. Anderson, “Introduction to equivariant cohomology in algebraic geometry”, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 71–92 | DOI | MR | Zbl

[5] D. Anderson, S. Griffeth, E. Miller, “Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces”, J. Eur. Math. Soc., 13:1 (2011), 57–84 | DOI | MR | Zbl

[6] A. Arabia, “Cohomologie $T$-équivariante de la variété de drapeaux d'un groupe de Kač–Moody”, Bull. Soc. Math. France, 117:2 (1989), 129–165 | DOI | MR | Zbl

[7] A. Arabia, “Cohomologie $T$-équivariante de $G/B$ pour un groupe $G$ de Kač–Moody”, C. R. Acad. Sci. Paris Sér. I Math., 302:17 (1986), 631–634 | MR | Zbl

[8] A. Arabia, “Cycles de Schubert et cohomologie équivariante de $K/T$”, Invent. Math., 85:1 (1986), 39–52 | DOI | MR | Zbl

[9] M. F. Atiyah, R. Bott, “The moment map and equivariant cohomology”, Topology, 23:1 (1984), 1–28 | DOI | MR | Zbl

[10] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228 | DOI | MR | Zbl

[11] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982, xii+486 pp. | MR | MR | Zbl

[12] E. Beazley, A. Bertiger, K. Taipale, “An equivariant rim hook rule for quantum cohomology of Grassmannians”, 26th international conference on formal power series and algebraic combinatorics (FPSAC 2014) (Chicago, IL, 2014), Discrete Math. Theor. Comput. Sci. Proc., AT, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014, 23–35 | MR | Zbl

[13] A. A. Beilinson, G. Lusztig, R. MacPherson, “A geometric setting for the quantum deformation of $GL_n$”, Duke Math. J., 61:2 (1990), 655–677 | DOI | MR | Zbl

[14] A. Berenstein, D. Kazhdan, “Geometric and unipotent crystals”, Visions in mathematics, GAFA 2000 special volume, part I (Tel Aviv, 1999), Mod. Birkhäuser Classics, Birkäuser, Basel, 2000, 188–236 | DOI | MR | Zbl

[15] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Schubert cells and cohomology of the spaces $G/P$”, Russian Math. Surveys, 28:3 (1973), 1–26 | DOI | MR | Zbl

[16] A. Bertram, I. Ciocan-Fontanine, W. Fulton, “Quantum multiplication of Schur polynomials”, J. Algebra, 219:2 (1999), 728–746 | DOI | MR | Zbl

[17] I. Bogdan, “Nonsymmetric Macdonald polynomials and Demazure characters”, Duke Math. J., 116:2 (2003), 299–318 | DOI | MR | Zbl

[18] N. M. Bogoliubov, A. G. Izergin, V. E. Korepin, “Quantum inverse scattering method and correlation functions”, Exactly solvable problems in condensed matter and relativistic field theory (Panchgani, 1985), Lecture Notes in Phys., 242, Springer, Berlin, 1985, 220–316 | DOI | MR

[19] A. Braverman, D. Maulik, A. Okounkov, “Quantum cohomology of the Springer resolution”, Adv. Math., 227:1 (2011), 421–458 | DOI | MR | Zbl

[20] M. Brion, “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI | MR

[21] B. Brubaker, D. Bump, S. Friedberg, “Schur polynomials and the Yang–Baxter equation”, Comm. Math. Phys., 308:2 (2011), 281–301 | DOI | MR | Zbl

[22] B. Brubaker, D. Bump, A. Licata, “Whittaker functions and Demazure operators”, J. Number Theory, 146 (2015), 41–68 | DOI | MR | Zbl

[23] A. S. Buch, L. C. Mihalcea, “Quantum $K$-theory of Grassmannians”, Duke Math. J., 156:3 (2011), 501–538 | DOI | MR | Zbl

[24] V. M. Bukhshtaber, “Operator doubles and semigroups of mappings into groups”, Dokl. Math., 51:2 (1995), 260–262 | MR | Zbl

[25] V. M. Buchstaber, “The Yang–Baxter transformation”, Russian Math. Surveys, 53:6 (1998), 1343–1345 | DOI | DOI | MR | Zbl

[26] D. Bump, P. J. McNamara, M. Nakasuji, “Factorial Schur functions and the Yang–Baxter equation”, Comment. Math. Univ. St. Pauli, 63:1-2 (2014), 2–45 | MR | Zbl

[27] I. Cherednik, Double affine Hecke algebras, London Math. Soc. Lecture Note Ser., 319, Cambridge Univ. Press, Cambridge, 2005, xii+434 pp. | DOI | MR | Zbl

[28] V. Collins, “A puzzle formula for $H^*_{T\times\mathbb{C}^{\times}}(T^*\mathbb{P}^n)$”, Sém. Lothar. Combin., 2017, no. 78B, Proceedings of the 29th international conference on formal power series and algebraic combinatorics (London, 2017), 67, 12 pp. | MR | Zbl

[29] M. Demazure, “Invariants symétriques entiers des groupes de Weyl et torsion”, Invent. Math., 21 (1973), 287–301 | DOI | MR | Zbl

[30] M. Demazure, “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53–88 | DOI | MR | Zbl

[31] V G. Drinfeld, “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32:1 (1985), 254–258 | MR | Zbl

[32] V. G. Drinfel'd, “Quantum groups”, Proceedings of the international congress of mathematicians (Berkeley, CA, 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | Zbl

[33] V. G. Drinfel'd, “On some unsolved problems in quantum group theory”, Quantum groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8 | DOI | MR | Zbl

[34] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[35] I. A. Dynnikov, “On a Yang–Baxter map and the Dehornoy ordering”, Russian Math. Surveys, 57:3 (2002), 592–594 | DOI | DOI | MR | Zbl

[36] P. Etingof, “Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation”, Comm. Algebra, 31:4 (2003), 1961–1973 | DOI | MR | Zbl

[37] P. Etingof, T. Schedler, A. Soloviev, “Set-theoretical solutions to the quantum Yang–Baxter equation”, Duke Math. J., 100:2 (1999), 169–209 | DOI | MR | Zbl

[38] L. D. Faddeev, “Classical and quantum $L$-matrices”, Exactly solvable problems in condensed matter and relativistic field theory (Panchgani, 1985), Lecture Notes in Phys., 242, Springer, Berlin, 1985, 158–174 | DOI | MR

[39] G. Felder, R. Rimányi, A. Varchenko, “Elliptic dynamical quantum groups equivariant elliptic cohomology”, SIGMA, 14 (2018), 132, 41 pp. | DOI | MR | Zbl

[40] G. Felder, V. Tarasov, A. Varchenko, “Solutions of the elliptic qKZB equations and Bethe ansatz. I”, Topics in singularity theory. V. I. Arnold's 60th anniversary collection, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 45–75 | DOI | MR | Zbl

[41] H. Franzen, “On cohomology rings of non-commutative Hilbert schemes and CoHa-modules”, Math. Res. Lett., 23:3 (2016), 805–840 | DOI | MR | Zbl

[42] I. B. Frenkel, M. G. Khovanov, “Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2)$”, Duke Math. J., 87:3 (1997), 409–480 | DOI | MR | Zbl

[43] I. Frenkel, M. Khovanov, C. Stroppel, “A categorification of finite-dimensional irreducible representations of quantum $\mathfrak{sl}_2$ and their tensor products”, Selecta Math. (N. S.), 12:3-4 (2006), 379–431 | DOI | MR | Zbl

[44] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp. | DOI | MR | Zbl

[45] W. Fulton, R. Pandharipande, “Notes on stable maps and quantum cohomology”, Algebraic geometry, Part 2 (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, 45–96 | DOI | MR | Zbl

[46] T. Gateva-Ivanova, “A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation”, J. Math. Phys., 45:10 (2004), 3828–3858 | DOI | MR | Zbl

[47] V. Ginzburg, “Lagrangian construction of the enveloping algebra $U(\mathfrak{sl}_n)$”, C. R. Acad. Sci. Paris Sér. I Math., 312:12 (1991), 907–912 | MR | Zbl

[48] V. Ginzburg, N. Reshetikhin, É. Vasserot, “Quantum groups and flag varieties”, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), Contemp. Math., 175, Amer. Math. Soc., Providence, RI, 1994, 101–130 | DOI | MR | Zbl

[49] A. B. Givental, “Homological geometry and mirror symmetry”, Proceedings of the International congress of mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 472–480 | DOI | MR | Zbl

[50] A. B. Givental, “Equivariant Gromov–Witten invariants”, Int. Math. Res. Not. IMRN, 1996:13 (1996), 613–663 | DOI | MR | Zbl

[51] A. Givental, Bumsig Kim, “Quantum cohomology of flag manifolds and Toda lattices”, Comm. Math. Phys., 168:3 (1995), 609–641 | DOI | MR | Zbl

[52] R. Goodman, N. R. Wallach, Symmetry, representations, and invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009, xx+716 pp. | DOI | MR | Zbl

[53] V. Gorbounov, C. Korff, “Quantum integrability and generalised quantum Schubert calculus”, Adv. Math., 313 (2017), 282–356 | DOI | MR | Zbl

[54] M. Goresky, R. Kottwitz, R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131:1 (1998), 25–83 | DOI | MR | Zbl

[55] E. Gorsky, P. Wedrich, Evaluations of annular Khovanov–Rozansky homology, 2019, 41 pp., arXiv: 1904.04481

[56] P. Guillot, C. Kassel, “Cohomology of invariant Drinfeld twists on group algebras”, Int. Math. Res. Not. IMRN, 2010:10 (2010), 1894–1939 | DOI | MR | Zbl

[57] E. Gutkin, “Integrable systems with delta-potential”, Duke Math. J., 49:1 (1982), 1–21 | DOI | MR | Zbl

[58] I. Halacheva, A. Knutson, P. Zinn-Justin, “Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles”, Sém. Lothar. Combin., 2020, no. 82B, Proceedings of the 5th conference on formal power series and algebraic combinatorics (Ljubljana, 2019), 83, 12 pp. | MR | Zbl

[59] M. Hazewinkel, N. Gubareni, V. V. Kirichenko, Algebras, rings and modules. Lie algebras and Hopf algebras, Math. Surveys Monogr., 168, Amer. Math. Soc., Providence, RI, 2010, xii+411 pp. | DOI | MR | Zbl

[60] D. Hernandez, “Avancées concernant les $R$-matrices et leurs applications d'après Maulik–Okounkov, Kang–Kashiwara–Kim–Oh, ...”, Séminaire Bourbaki, Exposés 1120–1135, v. 2016/2017, Astérisque, 407, Soc. Math. France, Paris, 2019, Exp. No. 1129, 297–332 | DOI | MR

[61] J. Hietarinta, “Permutation-type solutions to the Yang–Baxter and other $n$-simplex equations”, J. Phys. A, 30:13 (1997), 4757–4771 | DOI | MR | Zbl

[62] H. Y. Huang, F. Y. Wu, H. Kunz, D. Kim, “Interacting dimers on the honeycomb lattice: an exact solution of the five-vertex model”, Phys. A, 228:1-4 (1996), 1–32 | DOI | MR

[63] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge, Cambridge Univ. Press, 1990, xii+204 pp. | DOI | MR | Zbl

[64] R. Inoue, A. Kuniba, T. Takagi, “Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry”, J. Phys. A, 45:7 (2012), 073001, 64 pp. | DOI | MR | Zbl

[65] M. Jimbo, “A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR | Zbl

[66] R. Kane, Reflection groups and invariant theory, CMS Books Math./Ouvrages Math. SMC, 5, Springer-Verlag, New York, 2001, x+379 pp. | DOI | MR | Zbl

[67] M. Kashiwara, “Crystalizing the $q$-analogue of universal enveloping algebra”, Comm. Math. Phys., 133:2 (1990), 249–260 | DOI | MR | Zbl

[68] M. Kashiwara, “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63:2 (1991), 465–516 | DOI | MR | Zbl

[69] D. Kazhdan, G. Lusztig, “Equivariant $K$-theory and representations of Hecke algebras. II”, Invent. Math., 80:2 (1985), 209–231 | DOI | MR | Zbl

[70] M. Khovanov, A. D. Lauda, “A diagrammatic approach to categorification of quantum groups. I”, Represent. Theory, 13 (2009), 309–347 | DOI | MR | Zbl

[71] Bumsig Kim, “On equivariant quantum cohomology”, Int. Math. Res. Not. IMRN, 1996:17 (1996), 841–851 | DOI | MR | Zbl

[72] A. A. Kirillov, Jr., “Lectures on affine Hecke algebras and Macdonald's conjectures”, Bull. Amer. Math. Soc. (N.S.), 34:3 (1997), 251–292 | DOI | MR | Zbl

[73] S. L. Kleiman, D. Laksov, “Schubert calculus”, Amer. Math. Monthly, 79 (1972), 1061–1082 | DOI | MR | Zbl

[74] A. Knutson, T. Tao, “The honeycomb model of $GL_n(\mathbb{C})$ tensor products. I. Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090 | DOI | MR | Zbl

[75] A. Knutson, T. Tao, “Puzzles and (equivariant) cohomology of Grassmannians”, Duke Math. J., 119:2 (2003), 221–260 | DOI | MR | Zbl

[76] A. Knutson, T. Tao, C. Woodward, “The honeycomb model of ${GL}_n(\mathbb{C})$ tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone”, J. Amer. Math. Soc., 17:1 (2004), 19–48 | DOI | MR | Zbl

[77] A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability. I: Invariant trilinear forms, 2020 (v1 – 2017), 51 pp., arXiv: 1706.10019

[78] M. Kontsevich, Y. Soibelman, “Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants”, Commun. Number Theory Phys., 5:2 (2011), 231–352 | DOI | MR | Zbl

[79] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993, xx+555 pp. | DOI | MR | Zbl

[80] C. Korff, “Quantum cohomology via vicious and osculating walkers”, Lett. Math. Phys., 104:7 (2014), 771–810 | DOI | MR | Zbl

[81] C. Korff, C. Stroppel, “The $\mathfrak{sl}(n)_k$-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology”, Adv. Math., 225:1 (2010), 200–268 | DOI | MR | Zbl

[82] B. Kostant, S. Kumar, “The nil Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Adv. Math., 62:3 (1986), 187–237 | DOI | MR | Zbl

[83] B. Kostant, S. Kumar, “The nil Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Proc. Nat. Acad. Sci. U.S.A., 83:6 (1986), 1543–1545 | DOI | MR | Zbl

[84] S. Kumar, Kac–Moody groups, their flag varieties and representation theory, Progr. Math., 204, Birkhäuser Boston, Inc., Boston, MA, 2002, xvi+606 pp. | DOI | MR | Zbl

[85] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[86] M. Libine, Lecture notes on equivariant cohomology, 2010 (v1 – 2007), 72 pp., arXiv: 0709.3615

[87] G. Lusztig, “Equivariant $K$-theory and representations of Hecke algebras”, Proc. Amer. Math. Soc., 94:2 (1985), 337–342 | DOI | MR | Zbl

[88] G. Lusztig, “Cuspidal local systems and graded Hecke algebras. I”, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 145–202 | DOI | MR | Zbl

[89] G. Lusztig, “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3:2 (1990), 447–498 | DOI | MR | Zbl

[90] A. Mathas, Iwahori–Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Ser., 15, Amer. Math. Soc., Providence, RI, 1999, xiv+188 pp. | DOI | MR | Zbl

[91] D. Maulik, A. Okounkov, Quantum groups and quantum cohomology, Astérisque, 408, Soc. Math. France, Paris, 2019, ix+209 pp. | DOI | MR | Zbl

[92] V. Miemietz, C. Stroppel, “Affine quiver Schur algebras and $p$-adic ${GL}_n$”, Selecta Math. (N. S.), 25:2 (2019), 32, 66 pp. | DOI | MR | Zbl

[93] L. C. Mihalcea, “Equivariant quantum Schubert calculus”, Adv. Math., 203:1 (2006), 1–33 | DOI | MR | Zbl

[94] A. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007, xviii+400 pp. | DOI | MR | Zbl

[95] A. I. Molev, B. E. Sagan, “A Littlewood–Richardson rule for factorial Schur functions”, Trans. Amer. Math. Soc., 351:11 (1999), 4429–4443 | DOI | MR | Zbl

[96] N. A. Nekrasov, S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz”, Nuclear Phys. B Proc. Suppl., 192/193 (2009), 91–112 | DOI | MR

[97] A. Okounkov, “Lectures on $K$-theoretic computations in enumerative geometry”, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380 | DOI | MR | Zbl

[98] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev. (2), 65:3-4 (1944), 117–149 | DOI | MR | Zbl

[99] K. Palamarchuk, N. Reshetikhin, “The $6$-vertex model with fixed boundary conditions”, PoS Proc. Sci., 38, Proceedings of the conference “Bethe ansatz: 75 years later” (Brussels, 2006), 012, 44 pp., arXiv: https://arxiv.org/abs/1010.5011 | DOI

[100] T. Przezdziecki, Quiver Schur algebras and cohomological Hall algebras, 2019, 35 pp., arXiv: 1907.03679

[101] N. Reshetikhin, “Lectures on the integrability of the six-vertex model”, Exact methods in low-dimensional statistical physics and quantum computing, Oxford Univ. Press, Oxford, 2010, 197–266 | MR | Zbl

[102] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl

[103] R. Rimányi, V. Shekhtman, V. Tarasov, A. Varchenko, “Cohomology of a flag variety as a Bethe algebra”, Funct. Anal. Appl., 45:4 (2011), 252–264 | DOI | DOI | MR | Zbl

[104] C. M. Ringel, “Hall algebras and quantum groups”, Invent. Math., 101:3 (1990), 583–591 | DOI | MR | Zbl

[105] R. Rouquier, $2$-Kac–Moody algebras, 2008, 66 pp., arXiv: 0812.5023

[106] W. Rump, “Braces, radical rings, and the quantum Yang–Baxter equation”, J. Algebra, 307:1 (2007), 153–170 | DOI | MR | Zbl

[107] Y. B. Sanderson, “On the connection between Macdonald polynomials and Demazure characters”, J. Algebraic Combin., 11:3 (2000), 269–275 | DOI | MR | Zbl

[108] A. Savage, “The tensor product of representations of $U_q(\mathfrak{sl}_2)$ via quivers”, Adv. Math., 177:2 (2003), 297–340 | DOI | MR | Zbl

[109] O. Schiffmann, E. Vasserot, “On cohomological Hall algebras of quivers: generators”, J. Reine Angew. Math., 2020:760 (2020), 59–132 | DOI | MR | Zbl

[110] Y. Soibelman, “Remarks on cohomological Hall algebras and their representations”, Arbeitstagung Bonn 2013, Progr. Math., 319, Birkhäuser/Springer, Cham, 2016, 355–385 | DOI | MR | Zbl

[111] L. A. Takhtajan, “Introduction to algebraic Bethe ansatz”, Exactly solvable problems in condensed matter and relativistic field theory (Panchgani, 1985), Lecture Notes in Phys., 242, Springer, Berlin, 1985, 175–219 | DOI | MR

[112] V. Tarasov, A. Varchenko, “Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. Math., 128:3 (1997), 501–588 | DOI | MR | Zbl

[113] V. Tarasov, A. Varchenko, “Duality for Knizhnik–Zamolodchikov and dynamical equations”, Acta Appl. Math., 73:1-2 (2002), 141–154 | DOI | MR | Zbl

[114] T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Satsuma, “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76:18 (1996), 3247–3250 | DOI | MR

[115] M. Varagnolo, E. Vasserot, “Canonical bases and KLR-algebras”, J. Reine Angew. Math., 2011:659 (2011), 67–100 | DOI | MR | Zbl

[116] E. Vasserot, “Affine quantum groups and equivariant $K$-theory”, Transform. Groups, 3:3 (1998), 269–299 | DOI | MR | Zbl

[117] A. P. Veselov, “Yang–Baxter map and integrable dynamics”, Phys. Lett. A, 314:3 (2003), 214–221 | DOI | MR | Zbl

[118] A. Weinstein, Ping Xu, “Classical solutions of the quantum Yang–Baxter equation”, Comm. Math. Phys., 148:2 (1992), 309–343 | DOI | MR | Zbl

[119] M. Wheeler, P. Zinn-Justin, “Littlewood–Richardson coefficients for Grothendieck polynomials from integrability”, J. Reine Angew. Math., 2019:757 (2019), 159–195 | DOI | MR | Zbl

[120] F. Y. Wu, “Remarks on the modified potassium dihydrogen phosphate model of a ferroelectric”, Phys. Rev. (2), 168:2 (1968), 539–543 | DOI

[121] X. Xiao, “The product formula in cohomological Hall algebras”, São Paulo J. Math. Sci., 7:1 (2013), 59–68 | DOI | MR | Zbl

[122] X. Xiao, The double of representations of cohomological Hall algebra for $A_1$-quiver, 2015 (v1 – 2014), 13 pp., arXiv: 1407.7593

[123] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[124] A. B. Zamolodchikov, A. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120:2 (1979), 253–291 | DOI | MR

[125] P. Zinn-Justin, “Littlewood–Richardson coefficients and integrable tilings”, Electron. J. Combin., 16:1 (2009), R12, 33 pp. | DOI | MR | Zbl