Hermite–Padé polynomials and Shafer quadratic approximations for multivalued analytic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 788-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2020_75_4_a7,
     author = {S. P. Suetin},
     title = {Hermite{\textendash}Pad\'e polynomials and {Shafer} quadratic approximations for multivalued analytic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {788--790},
     year = {2020},
     volume = {75},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_4_a7/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Hermite–Padé polynomials and Shafer quadratic approximations for multivalued analytic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 788
EP  - 790
VL  - 75
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2020_75_4_a7/
LA  - en
ID  - RM_2020_75_4_a7
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Hermite–Padé polynomials and Shafer quadratic approximations for multivalued analytic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 788-790
%V 75
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2020_75_4_a7/
%G en
%F RM_2020_75_4_a7
S. P. Suetin. Hermite–Padé polynomials and Shafer quadratic approximations for multivalued analytic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 788-790. http://geodesic.mathdoc.fr/item/RM_2020_75_4_a7/

[1] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, UMN, 71:2(428) (2016), 205–206 | DOI | DOI | MR | Zbl

[2] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, UMN, 72:4(436) (2017), 95–130 | DOI | DOI | MR | Zbl

[3] G. Lopes Lagomasino, V. Van Ashe, Matem. sb., 209:7 (2018), 106–138 | DOI | DOI | MR | Zbl

[4] A. V. Sergeev, D. Z. Goodson, J. Phys. A, 31:18 (1998), 4301–4317 | DOI

[5] R. E. Shafer, SIAM J. Numer. Anal., 11:2 (1974), 447–460 | DOI | MR | Zbl

[6] H. Stahl, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[7] H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[8] S. P. Suetin, Hermite–Padé polynomials and analytic continuation: new approach and some results, 2018, 63 pp., arXiv: 1806.08735

[9] S. P. Suetin, Matem. zametki, 104:6 (2018), 918–929 | DOI | DOI | MR | Zbl

[10] R. Živanovič, 24th Mediterranean conference on control and automation (Athens, 2016), IEEE, 2016, 866–870 | DOI