Geometry of Banach limits and their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 725-763
Voir la notice de l'article provenant de la source Math-Net.Ru
A Banach limit is a positive shift-invariant functional on $\ell_\infty$ which extends the functional
$$
(x_1,x_2,\dots)\mapsto\lim_{n\to\infty}x_n
$$
from the set of convergent sequences to $\ell_\infty$. The history of Banach limits has its origins in classical papers by Banach and Mazur. The set of Banach limits has interesting properties which are useful in applications. This survey describes the current state of the theory of Banach limits and of the areas in analysis where they have found applications.
Bibliography: 137 titles.
Keywords:
Banach limits, invariant Banach limits, almost convergent sequences, extreme points, Cesàro operator, dilation operator, Stone–Čech compactification, singular trace of an operator, non-commutative geometry.
@article{RM_2020_75_4_a2,
author = {E. M. Semenov and F. A. Sukochev and A. S. Usachev},
title = {Geometry of {Banach} limits and their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {725--763},
publisher = {mathdoc},
volume = {75},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_4_a2/}
}
TY - JOUR AU - E. M. Semenov AU - F. A. Sukochev AU - A. S. Usachev TI - Geometry of Banach limits and their applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 725 EP - 763 VL - 75 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2020_75_4_a2/ LA - en ID - RM_2020_75_4_a2 ER -
E. M. Semenov; F. A. Sukochev; A. S. Usachev. Geometry of Banach limits and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 725-763. http://geodesic.mathdoc.fr/item/RM_2020_75_4_a2/