Mots-clés : Cesàro operator
@article{RM_2020_75_4_a2,
author = {E. M. Semenov and F. A. Sukochev and A. S. Usachev},
title = {Geometry of {Banach} limits and their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {725--763},
year = {2020},
volume = {75},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_4_a2/}
}
TY - JOUR AU - E. M. Semenov AU - F. A. Sukochev AU - A. S. Usachev TI - Geometry of Banach limits and their applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 725 EP - 763 VL - 75 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_4_a2/ LA - en ID - RM_2020_75_4_a2 ER -
E. M. Semenov; F. A. Sukochev; A. S. Usachev. Geometry of Banach limits and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 725-763. http://geodesic.mathdoc.fr/item/RM_2020_75_4_a2/
[1] Z. U. Ahmad, Mursaleen, “An application of Banach limits”, Proc. Amer. Math. Soc., 103:1 (1988), 244–246 | DOI | MR | Zbl
[2] A. Aizpuru, R. Armario, F. J. García-Pacheco, F. J. Pérez-Fernández, “Banach limits and uniform almost summability”, J. Math. Anal. Appl., 379:1 (2011), 82–90 | DOI | MR | Zbl
[3] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and compact operators”, J. Funct. Anal., 137:2 (1996), 281–302 | DOI | MR | Zbl
[4] E. A. Alekhno, “Nekotorye spetsialnye svoistva funktsionalov Mazura. II”, Analiticheskie metody analiza i differentsialnykh uravnenii (AMADE-2006), Tr. 4-i Mezhdunar. konf. (Minsk, 2006), v. 2, BGU, IM NAN Belarusi, Minsk, 2006, 17–23
[5] E. A. Alekhno, “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645 | DOI | MR | Zbl
[6] E. A. Alekhno, “On Banach–Mazur limits”, Indag. Math. (N. S.), 26:4 (2015), 581–614 | DOI | MR | Zbl
[7] E. Alekhno, E. Semenov, F. Sukochev, A. Usachev, “Order and geometric properties of the set of Banach limits”, St. Petersburg Math. J., 28:3 (2017), 299–321 | DOI | MR | Zbl
[8] E. Alekhno, E. Semenov, F. Sukochev, A. Usachev, “On the structure of invariant Banach limits”, C. R. Math. Acad. Sci. Paris, 354:12 (2016), 1195–1199 | DOI | MR | Zbl
[9] E. A. Alekhno, E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Banach limits: invariance and functional characteristics”, Dokl. Math., 96:1 (2017), 305–307 | DOI | DOI | MR | Zbl
[10] E. Alekhno, E. Semenov, F. Sukochev, A. Usachev, “Invariant Banach limits and their extreme points”, Studia Math., 242:1 (2018), 79–107 | DOI | MR | Zbl
[11] C. D. Aliprantis, O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, xx+376 pp. | DOI | MR | Zbl
[12] J. Appell, E. De Pascale, P. P. Zabrejko, “Some remarks on Banach limits”, Atti Sem. Mat. Fis. Univ. Modena, 42:1 (1994), 273–278 | MR | Zbl
[13] R. Armario, F. J. García-Pacheco, F. J. Pérez-Fernández, “On vector-valued Banach limits”, Funct. Anal. Appl., 47:4 (2013), 315–318 | DOI | DOI | MR | Zbl
[14] S. V. Astashkin, E. M. Semenov, “Lebesgue constants of the Walsh system and Banach limits”, Siberian Math. J., 57:3 (2016), 398–410 | DOI | DOI | MR | Zbl
[15] N. N. Avdeev, “On the space of almost convergent sequences”, Math. Notes, 105:3 (2019), 464–468 | DOI | DOI | MR | Zbl
[16] N. N. Avdeev, E. M. Semenov, A. S. Usachev, “Banach limits and a measure on the set of 0-1-sequences”, Math. Notes, 106:5 (2019), 833–836 | DOI | DOI | MR | Zbl
[17] S. Banach, Théorie des opérations linéaires, Monogr. Mat., 1, Inst. Mat. PAN, Warszawa, 1932, vii+254 pp. | MR | Zbl
[18] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[19] G. Bennett, N. J. Kalton, “Consistency theorems for almost convergence”, Trans. Amer. Math. Soc., 198 (1974), 23–43 | DOI | MR | Zbl
[20] M. M. Bogolyubov, “Pro deyaki ergodichni vlastivosti sutsilnikh grupp pretvoren”, Nauk. zap. Kiïv. derzh. un-tu im. T. G. Shevchenko. Fiz.-matem. zb., 4:3 (1939), 45–53
[21] É. Borel, “Les probabilités dénombrables et leurs applications arithmétiques”, Rend. Circ. Mat. Palermo, 27 (1909), 247–271 | DOI | Zbl
[22] R. E. Bruck, S. Reich, “Accretive operators, Banach limits and dual ergodic theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:11-12 (1981), 585–589 | MR | Zbl
[23] J. W. Calkin, “Abstract symmetric boundary conditions”, Trans. Amer. Math. Soc., 45:3 (1939), 369–442 | DOI | MR | Zbl
[24] A. L. Carey, J. Phillips, A. Rennie, F. Sukochev, “The Hochschild class of the Chern character for semifinite spectral triples”, J. Funct. Anal., 213:1 (2004), 111–153 | DOI | MR | Zbl
[25] A. Carey, J. Phillips, F. A. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–133 | DOI | MR | Zbl
[26] A. L. Carey, A. Rennie, A. Sedaev, F. Sukochev, “The {D}ixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249:2 (2007), 253–283 | DOI | MR | Zbl
[27] A. L. Carey, F. A. Sukochev, “Dixmier traces and some applications in non-commutative geometry”, Russian Math. Surveys, 61:6 (2006), 1039–1099 | DOI | DOI | MR | Zbl
[28] A. Carey, F. Sukochev, “Measurable operators and the asymptotics of heat kernels and zeta functions”, J. Funct. Anal., 262:10 (2012), 4582–4599 | DOI | MR | Zbl
[29] C. Chou, “On the size of the set of left invariant means on a semigroup”, Proc. Amer. Math. Soc., 23 (1969), 199–205 | DOI | MR | Zbl
[30] C. Chou, “Minimal sets and ergodic measures for $\beta N \setminus N$”, Illinois J. Math., 13:4 (1969), 777–788 | DOI | MR | Zbl
[31] A. Connes, “The action functional in non-commutative geometry”, Comm. Math. Phys., 117:4 (1988), 673–683 | DOI | MR | Zbl
[32] A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp. | MR | Zbl
[33] A. Connes, E. McDonald, F. Sukochev, D. Zanin, “Conformal trace theorem for {J}ulia sets of quadratic polynomials”, Ergodic Theory Dynam. Systems, 39:9 (2019), 2481–2506 | DOI | MR | Zbl
[34] A. Connes, F. A. Sukochev, D. V. Zanin, “Trace theorem for quasi-Fuchsian groups”, Sb. Math., 208:10 (2017), 1473–1502 | DOI | DOI | MR | Zbl
[35] J. Connor, “Almost none of the sequences of 0's and 1's are almost convergent”, Internat. J. Math. Math. Sci., 13:4 (1990), 775–777 | DOI | MR | Zbl
[36] R. G. Cooke, “Generalizations of Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 4:3 (1953), 410–417 | DOI | MR | Zbl
[37] Y. Cui, H. Hudzik, R. Pluciennik, “Extreme points and strongly extreme points in Orlicz spaces equipped with the Orlicz norm”, Z. Anal. Anwendungen, 22:4 (2003), 789–817 | DOI | MR | Zbl
[38] G. Das, “Banach and other limits”, J. London Math. Soc. (2), 7:3 (1974), 501–507 | DOI | MR | Zbl
[39] G. Das, B. Kuttner, S. Nanda, “Some sequence spaces and absolute almost convergence”, Trans. Amer. Math. Soc., 283:2 (1984), 729–739 | DOI | MR | Zbl
[40] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | DOI | MR | Zbl
[41] M. M. Day, Normed linear spaces, Ergeb. Math. Grenzgeb. (N. F.), Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, iv+139 pp. | DOI | MR | MR | Zbl | Zbl
[42] M. M. Day, “Semigroups and amenability”, Semigroups (Wayne State Univ., Detroit, MI, 1968), Academic Press, New York, 1969, 5–53 | MR | Zbl
[43] J. B. Deeds, “Summability of vector sequences”, Studia Math., 30 (1968), 361–372 | DOI | MR | Zbl
[44] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A1107–A1108 | MR | Zbl
[45] P. Dodds, B. De Pagter, A. Sedaev, E. Semenov, F. Sukochev, “Singular symmetric functionals”, J. Math. Sci. (N. Y.), 124:2 (2004), 4867–4885 | DOI | MR | Zbl
[46] P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev, “Singular symmetric functionals and Banach limits with additional invariance properties”, Izv. Math., 67:6 (2003), 1187–1212 | DOI | DOI | MR | Zbl
[47] P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2:1 (1998), 47–75 | DOI | MR | Zbl
[48] R. G. Douglas, “On the measure-theoretic character of an invariant mean”, Proc. Amer. Math. Soc., 16 (1965), 30–36 | DOI | MR | Zbl
[49] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[50] W. F. Eberlein, “Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 1 (1950), 662–665 | DOI | MR | Zbl
[51] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl
[52] L. Fairchild, “Extreme invariant means without minimal support”, Trans. Amer. Math. Soc., 172 (1972), 83–93 | DOI | MR | Zbl
[53] G. Fichtenholz, L. Kantorovitch, “Sur les opérations linéaires dans l'espace des fonctions bornées”, Studia Math., 5 (1934), 69–98 | DOI | Zbl
[54] J. Flores, F. L. Hernández, E. M. Semenov, P. Tradacete, “Strictly singular and power-compact operators on Banach lattices”, Israel J. Math., 188 (2012), 323–352 | DOI | MR | Zbl
[55] C. Foias, R. M. S. Rosa, R. M. Temam, “Convergence of time averages of weak solutions of the three-dimensional Navier–Stokes equations”, J. Stat. Phys., 160:3 (2015), 519–531 | DOI | MR | Zbl
[56] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge Univ. Press, London, 1974, xiv+266 pp. | MR | Zbl
[57] D. H. Fremlin, Well-distributed sequences and Banach density, Vers. of 28.3.11, 40 pp. https://www1.essex.ac.uk/maths/people/fremlin/n02j23.pdf
[58] D. H. Fremlin, M. Talagrand, “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168:2 (1979), 117–142 | DOI | MR | Zbl
[59] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto–London, 1969, ix+113 pp. | MR | Zbl | Zbl
[60] A. Guichardet, “La trace de Dixmier et autres traces”, Enseign. Math., 61:3-4 (2015), 461–481 | DOI | MR | Zbl
[61] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | MR | MR | Zbl
[62] M. Jerison, “The set of generalized limits of bounded sequences”, Canadian J. Math., 9 (1957), 79–89 | DOI | MR | Zbl
[63] V. M. Kadets, Kurs funktsionalnogo analiza, Khark. nats. un-t im. V. N. Karazina, Kharkov, 2006, 608 pp. | MR | Zbl
[64] N. Kalton, S. Lord, D. Potapov, F. Sukochev, “Traces of compact operators and the noncommutative residue”, Adv. Math., 235 (2013), 1–55 | DOI | MR | Zbl
[65] T. Kania, “Vector-valued invariant means revisited once again”, J. Math. Anal. Appl., 445:1 (2017), 797–802 | DOI | MR | Zbl
[66] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, N. Y., 1982, xiv+589 pp. | MR | MR | Zbl
[67] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[68] G. Keller, L. C. Moore, Jr., “Invariant means on the group of integers”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 1–18 | MR | Zbl
[69] R. Kunisada, “Invariant linear functionals on $L^\infty(R_+)$”, J. Math. Anal. Appl., 481:1 (2020), 123452, 22 pp. | DOI | MR | Zbl
[70] J. C. Kurtz, “Almost convergent vector sequences”, Tohoku Math. J. (2), 22:4 (1970), 493–498 | DOI | MR | Zbl
[71] J. C. Kurtz, “Almost convergence in Banach spaces”, Tohoku Math. J. (2), 24:3 (1972), 389–399 | DOI | MR | Zbl
[72] S. S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts Math. Sci., 12, Kluwer Acad. Publ., Dordrecht, 1996, xiv+276 pp. | DOI | MR | MR | Zbl | Zbl
[73] S. Li, C. Li, Y.-C. Li, “On $\sigma$-limit and $s\sigma$-limit in Banach spaces”, Taiwanese J. Math., 9:3 (2005), 359–371 | DOI | MR | Zbl
[74] X. Li, W. Shen, C. Sun, “Invariant measures for complex-valued dissipative dynamical systems and applications”, Discrete Contin. Dyn. Syst. Ser. B, 22:6 (2017), 2427–2446 | DOI | MR | Zbl
[75] Y.-C. Li, “Almost convergence of sequences in Banach spaces in weak, strong and absolute senses”, Taiwanese J. Math., 10:1 (2006), 209–218 | DOI | MR | Zbl
[76] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl
[77] S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp. | MR | Zbl
[78] S. Lord, F. A. Sukochev, D. Zanin, “Advances in Dixmier traces and applications”, Advances in noncommutative geometry, Springer, Cham, 2020, 491–584 | DOI
[79] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190 | DOI | MR | Zbl
[80] W. A. J. Luxemburg, “Nonstandard hulls, generalized limits and almost convergence”, Analysis and geometry. Trends in research and teaching, eds. B. Fuchssteiner, W. A. J. Luxemburg, B. I. Wissenschaftsverlag, Mannheim, 1992, 19–45 | MR | Zbl
[81] W. A. J. Luxemburg, B. de Pagter, “Invariant means for positive operators and semigroups”, Circumspice. Various papers in and around mathematics in honor of Arnoud van Rooij, Catholic Univ. of Nijmegen, Nijmegen, 2001, 31–55
[82] K. Matomäki, M. Radziwiłł, T. Tao, “Sign patterns of the Liouville and Möbius functions”, Forum Math. Sigma, 4 (2016), 14, 44 pp. | DOI | MR | Zbl
[83] S. Mazur, “O metodach sumowalności”, Ann. Soc. Polon. Math. (Suppl.), 1929, 102–107
[84] S. Mazur, “On the generalized limit of bounded sequences”, Colloq. Math., 2 (1951), 173–175 | DOI | MR | Zbl
[85] J. Mercer, “Sturm–Liouville series of normal functions in the theory of integral equations”, Philos. Trans. R. Soc. Lond. Ser. A, 211 (1912), 111–198 | DOI | Zbl
[86] V. D. Milman, “Operatory klassa $c_0$ i $c_0^*$”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 10, Izd-vo Khark. un-ta, Kh., 1970, 15–26 | MR | Zbl
[87] F. Móricz, B. E. Rhoades, “Almost convergence of double sequences and strong regularity of summability matrices”, Math. Proc. Cambridge Philos. Soc., 104:2 (1988), 283–294 | DOI | MR | Zbl
[88] Mursaleen, “On some new invariant matrix methods of summability”, Quart. J. Math. Oxford Ser. (2), 34 (1983), 77–86 | DOI | MR | Zbl
[89] Mursaleen, A. K. Gaur, T. A. Chishti, “On some new sequence spaces of invariant means”, Acta Math. Hungar., 75:3 (1997), 209–214 | DOI | MR | Zbl
[90] M. Nakamura, S. Kakutani, “Banach limits and the Čech compactification of a countable discrete set”, Proc. Imp. Acad. Tokyo, 19:5 (1943), 224–229 | DOI | MR | Zbl
[91] S. Nanda, “Strongly almost summable and strongly almost convergent sequences”, Acta Math. Hungar., 49:1-2 (1987), 71–76 | DOI | MR | Zbl
[92] J. v. Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116 | DOI | Zbl
[93] R. Nillsen, “Nets of extreme Banach limits”, Proc. Amer. Math. Soc., 55:2 (1976), 347–352 | DOI | MR | Zbl
[94] Y. Peres, “Application of Banach limits to the study of sets of integers”, Israel J. Math., 62:1 (1988), 17–31 | DOI | MR | Zbl
[95] A. Pietsch, “Einige neue Klassen von kompakten linearen Abbildungen”, Rev. Math. Pures Appl., 8 (1963), 427–447 | MR | Zbl
[96] A. Pietsch, “Traces and shift invariant functionals”, Math. Nachr., 145 (1990), 7–43 | DOI | MR | Zbl
[97] A. Pietsch, “Connes–Dixmier versus Dixmier traces”, Integral Equations Operator Theory, 77:2 (2013), 243–259 | DOI | MR | Zbl
[98] A. Pietsch, “Traces of operators and their history”, Acta Comment. Univ. Tartu. Math., 18:1 (2014), 51–64 | DOI | MR | Zbl
[99] A. Pietsch, “Traces on operator ideals and related linear forms on sequence ideals (part I)”, Indag. Math. (N. S.), 25:2 (2014), 341–365 | DOI | MR | Zbl
[100] A. Pietsch, “Traces on operator ideals and related linear forms on sequence ideals (part II)”, Integral Equations Operator Theory, 79:2 (2014), 255–299 | DOI | MR | Zbl
[101] A. Pietsch, “Traces on operator ideals and related linear forms on sequence ideals (part III)”, J. Math. Anal. Appl., 421:2 (2015), 971–981 | DOI | MR | Zbl
[102] A. Pietsch, “A new approach to operator ideals on {H}ilbert space and their traces”, Integral Equations Operator Theory, 89:4 (2017), 595–606 | DOI | MR | Zbl
[103] A. Pietsch, “The spectrum of shift operators and the existence of traces”, Integral Equations Operator Theory, 90:2 (2018), 17, 13 pp. | DOI | MR | Zbl
[104] W. Prager, J. Schwaiger, “Vector valued Banach limits and generalizations applied to the inhomogeneous Cauchy equation”, Aequationes Math., 93:1 (2019), 257–275 | DOI | MR | Zbl
[105] R. A. Raimi, “Invariant means and invariant matrix methods of summability”, Duke Math. J., 30 (1963), 81–94 | DOI | MR | Zbl
[106] R. A. Raimi, “Factorization of summability-preserving generalized limits”, J. London Math. Soc. (2), 22:3 (1980), 398–402 | DOI | MR | Zbl
[107] L. Rotem, “Banach limit in convexity and geometric means for convex bodies”, Electron. Res. Announc. Math. Sci., 23 (2016), 41–51 | DOI | MR | Zbl
[108] M. K. Roychowdhury, “Quantization dimension for Gibbs-like measures on cookie-cutter sets”, Kyoto J. Math., 54:2 (2014), 239–257 | DOI | MR | Zbl
[109] A. A. Sedaev, “Ob approksimatsii predelov Banakha elementami prostranstva $\ell_1$”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2006, no. 1, 187–192 | Zbl
[110] A. A. Sedaev, F. A. Sukochev, “Dixmier measurability in Marcinkiewicz spaces and applications”, J. Funct. Anal., 265:12 (2013), 3053–3066 | DOI | MR | Zbl
[111] E. M. Semenov, A. M. Shteĭnberg, “Norm estimates of operator blocks in Banach lattices”, Math. USSR-Sb., 54:2 (1986), 317–333 | DOI | MR | Zbl
[112] E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 256:6 (2010), 1517–1541 | DOI | MR | Zbl
[113] E. M. Semenov, F. A. Sukochev, “Characteristic functions of Banach limits”, Siberian Math. J., 51:4 (2010), 723–727 | DOI | MR | Zbl
[114] E. M. Semenov, F. A. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170 | DOI | MR | Zbl
[115] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Structure properties of the Banach limit set”, Dokl. Math., 84:3 (2011), 802–803 | DOI | MR | Zbl
[116] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Geometric properties of the set of Banach limits”, Izv. Math., 78:3 (2014), 596–620 | DOI | DOI | MR | Zbl
[117] E. M. Semenov, F. A. Sukochev, A. S. Usachev, “The main classes of invariant Banach limits”, Izv. Math., 83:1 (2019), 124–150 | DOI | DOI
[118] E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Banach limits and traces on $\mathscr L_{1,\infty}$”, Adv. Math., 285 (2015), 568–628 | DOI | MR | Zbl
[119] E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Dilation invariant Banach limits”, Indag. Math. (to appear) ; 2019, 10 pp., arXiv: 1910.10899 | DOI
[120] E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Invariant Banach limits and applications to noncommutative geometry”, Pacific Math. J., 306:1 (2020), 357–373 | DOI | MR | Zbl
[121] E. M. Semenov, A. S. Usachev, “Fourier–Haar coefficients and Banach limits”, Dokl. Math., 79:2 (2009), 191–192 | DOI | MR | Zbl
[122] E. M. Semenov, A. S. Usachev, O. O. Khorpyakov, “The space of almost convergent sequences”, Dokl. Math., 74:1 (2006), 587–588 | DOI | MR | Zbl
[123] R. Sikorski, “On the existence of the generalized limit”, Studia Math., 12 (1951), 117–124 | DOI | MR | Zbl
[124] M. A. Sofi, Banach limits – some new thoughts and perspectives, 2019, 16 pp., arXiv: 1906.04168
[125] L. Sucheston, “On existence of finite invariant measures”, Math. Z., 86 (1964), 327–336 | DOI | MR | Zbl
[126] L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74:3 (1967), 308–311 | DOI | MR | Zbl
[127] F. Sukochev, A. Usachev, D. Zanin, “Generalized limits with additional invariance properties and their applications to noncommutative geometry”, Adv. Math., 239 (2013), 164–189 | DOI | MR | Zbl
[128] F. Sukochev, A. Usachev, D. Zanin, “On the distinction between the classes of Dixmier and Connes–Dixmier traces”, Proc. Amer. Math. Soc., 141:6 (2013), 2169–2179 | DOI | MR | Zbl
[129] F. Sukochev, A. Usachev, D. Zanin, “Dixmier traces generated by exponentiation invariant generalised limits”, J. Noncommut. Geom., 8:2 (2014), 321–336 | DOI | MR | Zbl
[130] F. Sukochev, A. Usachev, D. Zanin, “Singular traces and residues of the $\zeta$-function”, Indiana Univ. Math. J., 66:4 (2017), 1107–1144 | DOI | MR | Zbl
[131] F. Sukochev, D. Zanin, “$\zeta$-function and heat kernel formulae”, J. Funct. Anal., 260:8 (2011), 2451–2482 | DOI | MR | Zbl
[132] F. Sukochev, D. Zanin, “Which traces are spectral?”, Adv. Math., 252 (2014), 406–428 | DOI | MR | Zbl
[133] M. Talagrand, “Géométrie des simplexes de moyennes invariantes”, J. Funct. Anal., 34:2 (1979), 304–337 | DOI | MR | Zbl
[134] R. Tanaka, “On vector-valued Banach limits with values in $\mathcal B(\mathcal H)$”, Publ. Math. Debrecen, 92:3-4 (2018), 471–480 | DOI | MR | Zbl
[135] A. S. Usachev, “Transformations in the space of almost convergent sequences”, Siberian Math. J., 49:6 (2008), 1136–1137 | DOI | MR | Zbl
[136] A. Usachev, “On Fourier–Haar coefficients of the function from the Marcinkiewicz space”, J. Math. Anal. Appl., 414:1 (2014), 110–124 | DOI | MR | Zbl
[137] S. Wagon, The Banach–Tarski paradox, Corr. reprint of the 1985 original, Cambridge Univ. Press, Cambridge, 1994, xviii+253 pp. | MR | Zbl