Spectral triangles of non-selfadjoint Hill and Dirac operators
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 587-626
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill–Schrödinger and Dirac operators. Let $L$ be a Hill operator or a one-dimensional Dirac operator on the interval $[0,\pi]$. If $L$ is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large $|n|$, close to $n^2$ in the Hill case or close to $n$ in the Dirac case ($n\in \mathbb{Z}$). There is one Dirichlet eigenvalue $\mu_n$ and two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$ and $\lambda_n^+$ (counted with multiplicity). Asymptotic estimates are given for the spectral gaps $\gamma_n=\lambda_n^+-\lambda_n^-$ and the deviations $\delta_n=\mu_n-\lambda_n^+$ in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for $\gamma_n$ and $\delta_n$ are found for special potentials that are trigonometric polynomials.
Bibliography: 45 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hill operator, one-dimensional Dirac operator, periodic boundary conditions, antiperiodic boundary conditions, Dirichlet boundary conditions.
                    
                    
                    
                  
                
                
                @article{RM_2020_75_4_a0,
     author = {P. B. Djakov and B. S. Mityagin},
     title = {Spectral triangles of non-selfadjoint {Hill} and {Dirac} operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {587--626},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2020_75_4_a0/}
}
                      
                      
                    TY - JOUR AU - P. B. Djakov AU - B. S. Mityagin TI - Spectral triangles of non-selfadjoint Hill and Dirac operators JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 587 EP - 626 VL - 75 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2020_75_4_a0/ LA - en ID - RM_2020_75_4_a0 ER -
P. B. Djakov; B. S. Mityagin. Spectral triangles of non-selfadjoint Hill and Dirac operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 4, pp. 587-626. http://geodesic.mathdoc.fr/item/RM_2020_75_4_a0/
