@article{RM_2020_75_3_a4,
author = {B. A. Plamenevskii and A. S. Poretskii and O. V. Sarafanov},
title = {A method for approximate computation of waveguide scattering matrices},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {509--568},
year = {2020},
volume = {75},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_3_a4/}
}
TY - JOUR AU - B. A. Plamenevskii AU - A. S. Poretskii AU - O. V. Sarafanov TI - A method for approximate computation of waveguide scattering matrices JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 509 EP - 568 VL - 75 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_3_a4/ LA - en ID - RM_2020_75_3_a4 ER -
%0 Journal Article %A B. A. Plamenevskii %A A. S. Poretskii %A O. V. Sarafanov %T A method for approximate computation of waveguide scattering matrices %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 509-568 %V 75 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2020_75_3_a4/ %G en %F RM_2020_75_3_a4
B. A. Plamenevskii; A. S. Poretskii; O. V. Sarafanov. A method for approximate computation of waveguide scattering matrices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 3, pp. 509-568. http://geodesic.mathdoc.fr/item/RM_2020_75_3_a4/
[1] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[2] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl
[3] B. A. Plamenevskii, “On spectral properties of elliptic problems in domains with cylindrical ends”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 123–139 | DOI | MR | Zbl
[4] B. A. Plamenevskiĭ, A. S. Poretskiĭ, O. V. Sarafanov, “Method for computing waveguide scattering matrices in the vicinity of thresholds”, St. Petersburg Math. J., 26:1 (2015), 91–116 | DOI | MR | Zbl
[5] B. A. Plamenevskii, A. S. Poretskii, “Izluchenie i rasseyanie v elektromagnitnykh volnovodakh vblizi porogov”, Algebra i analiz, 32:4 (2020), v pechati
[6] V. E. Grikurov, E. Heikkola, P. Neittaanmäki, B. A. Plamenevskii, “On computation of scattering matrices and on surface waves for diffraction gratings”, Numer. Math., 94:2 (2003), 269–288 | DOI | MR | Zbl
[7] B. A. Plamenevskiĭ, O. V. Sarafanov, “On a method for computing waveguide scattering matrices”, St. Petersburg Math. J., 23:1 (2012), 139–160 | DOI | MR | Zbl
[8] L. Baskin, P. Neittaanmäki, B. Plamenevskii, O. Sarafanov, Resonant tunneling. Quantum waveguides of variable cross-section, asymptotics, numerics, and applications, Lect. Notes Numer. Methods Eng. Sci., Springer, Cham, 2015, xii+275 pp. | DOI | MR | Zbl
[9] B. A. Plamenevskii, O. V. Sarafanov, “On a method for computing waveguide scattering matrices in the presence of point spectrum”, Funct. Anal. Appl., 48:1 (2014), 49–58 | DOI | DOI | MR | Zbl
[10] S. A. Nazarov, B. A. Plamenevskiĭ, “Selfadjoint elliptic problems with radiation conditions on the edges of the boundary”, St. Petersburg Math. J., 4:3 (1993), 569–594 | MR | Zbl
[11] I. V. Kamotskii, S. A. Nazarov, “Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I”, Sb. Math., 190:1 (1999), 111–141 | DOI | DOI | DOI | DOI | MR | MR | Zbl | Zbl
[12] I. V. Kamotskii, S. A. Nazarov, “The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain”, J. Math. Sci. (N. Y.), 111:4 (2002), 3657–3666 | DOI | MR | Zbl
[13] L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, A. A. Pozharskii, “On electron transport in 3D quantum waveguides of variable cross-section”, Nanotechnology, 17:4 (2006), 19–23 | DOI
[14] L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, Semiconductor device and method to control the states of the semiconductor device and to manufacture the same, Patent 121489, Finland, 2010
[15] L. M. Baskin, M. Kabardov, P. Neittaanmäki, B. A. Plamenevskii, O. V. Sarafanov, “Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross section”, Comput. Math. Math. Phys., 53:11 (2013), 1664–1683 | DOI | DOI | MR | Zbl
[16] L. Baskin, M. Kabardov, P. Neittaanmäki, O. Sarafanov, “Asymptotic and numerical study of electron flow spin-polarization in 2D waveguides of variable cross-section in the presence of magnetic field”, Math. Methods Appl. Sci., 37:7 (2014), 1072–1092 | DOI | MR | Zbl
[17] M. M. Kabardov, B. A. Plamenevskii, O. V. Sarafanov, N. M. Sharkova, “Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in two-dimensional symmetric quantum waveguides of variable cross-sections”, J. Math. Sci. (N. Y.), 238:5 (2019), 641–651 | DOI | MR | Zbl
[18] M. M. Kabardov, B. A. Plamenevskii, N. M. Sharkova, “Computation of waveguide scattering matrix near thresholds”, Appl. Anal., 96:8 (2017), 1295–1302 | DOI | MR | Zbl
[19] T. Ohmura (Kikuta), “A new formulation on the electromagnetic field”, Progr. Theoret. Phys., 16:6 (1956), 684–685 | DOI
[20] I. S. Gudovich, S. G. Krein, Kraevye zadachi dlya pereopredelennykh sistem uravnenii v chastnykh proizvodnykh, Differentsialnye uravneniya i ikh primeneniya. Tr. sem., 9, In-t fiz. i matem. AN LitSSR, Vilnyus, 1974, 146 pp. | MR | Zbl
[21] M. Sh. Birman, M. Z. Solomyak, “The selfadjoint Maxwell operator in arbitrary domains”, Leningrad Math. J., 1:1 (1990), 99–115 | MR | Zbl
[22] R. Picard, “On the low frequency asymptotics in electromagnetic theory”, J. Reine Angew. Math., 354 (1984), 50–73 | DOI | MR | Zbl
[23] R. Picard, S. Trostorff, M. Waurick, “On a connection between the Maxwell system, the extended Maxwell system, the Dirac operator and gravito-electromagnetism”, Math. Methods Appl. Sci., 40:2 (2017), 415–434 | DOI | MR | Zbl
[24] B. A. Plamenevskiĭ, A. S. Poretskiĭ, “The Maxwell system in waveguides with several cylindrical ends”, St. Petersburg Math. J., 25:1 (2014), 63–104 | DOI | MR | Zbl
[25] B. A. Plamenevskiĭ, A. S. Poretskiĭ, “The Maxwell system in waveguides with several cylindrical outlets to infinity and nonhomogeneous anisotropic filling”, St. Petersburg Math. J., 29:2 (2018), 289–314 | DOI | MR | Zbl
[26] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “On computation of waveguide scattering matrices for the Maxwell system”, Funct. Anal. Appl., 49:1 (2015), 77–80 | DOI | DOI | MR | Zbl
[27] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “On a method of approximate computing of scattering matrices for electromagnetic waveguides”, Dokl. Phys., 63:10 (2018), 414–417 | DOI | DOI
[28] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sov. Radio, M., 1966, 431 pp.
[29] E. I. Nefedov, A. T. Fialkovskii, Asimptoticheskaya teoriya difraktsii elektromagnitnykh voln na konechnykh strukturakh, Nauka, M., 1972, 204 pp.
[30] R. Mittra, S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan Series in Electrical Science, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1971, ix+302 pp. | Zbl | Zbl
[31] A. S. Ilinskii, V. V. Kravtsov, A. G. Sveshnikov, Matematicheskie modeli elektrodinamiki, Uch. posob. dlya vuzov, Vysshaya shkola, M., 1991, 224 pp.
[32] T. N. Galishnikova, A. S. Ilinskii, Metod integralnykh uravnenii v zadachakh difraktsii voln, MAKS Press, M., 2013, 248 pp.
[33] A. N. Bogolyubov, A. L. Delitsyn, A. G. Sveshnikov, “On the problem of excitation of a waveguide filled with an inhomogeneous medium”, Comput. Math. Math. Phys., 39:11 (1999), 1794–1813 | MR | Zbl
[34] A. N. Bogolyubov, A. L. Delitsyn, A. G. Sveshnikov, “On conditions for the solvability of the problem of the excitation of a radio waveguide”, Dokl. Math., 61:1 (2000), 126–129 | MR | Zbl
[35] A. L. Delitsyn, “The statement and solubility of boundary-value problems for Maxwell's equations in a cylinder”, Izv. Math., 71:3 (2007), 495–544 | DOI | DOI | MR | Zbl
[36] P. E. Krasnushkin, E. I. Moiseev, “The excitation of forced oscillations in a stratified radio-waveguide”, Soviet Phys. Dokl., 27:6 (1982), 458–460 | MR
[37] B. A. Plamenevskii, A. S. Poretskii, “Behavior of waveguide scattering matrices in a neighborhood of thresholds”, St. Petersburg Math. J., 30:2 (2019), 285–319 | DOI | MR | Zbl
[38] M. Costabel, M. Dauge, “Stable asymptotics for elliptic systems on plane domains with corners”, Comm. Partial Differential Equations, 19:9-10 (1994), 1677–1726 | DOI | MR | Zbl
[39] V. Maz'ya, J. Rossmann, “On a problem of Babuška (stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points)”, Math. Nachr., 155 (1992), 199–220 | DOI | MR | Zbl
[40] B. Schmutzler, “The structure of branching asymptotics for elliptic boundary value problems in domains with edges”, Symposium {“}Analysis on manifolds with singularities{\rm”} (Breitenbrunn, 1990), Teubner-Texte Math., 131, Teubner, Stuttgart, 1992, 201–207 | DOI | MR | Zbl
[41] B. W. Schulze, “Regularity with continuous and branching asymptotics for elliptic operators on manifolds with edges”, Integral Equations Operator Theory, 11:4 (1988), 557–602 | DOI | MR | Zbl
[42] L. Bers, F. John,, M. Schechter, Partial differential equations, With special lectures by L. Garding and A. N. Milgram (Boulder, CO, 1957), Lectures in Appl. Math., III, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1964, xiii+343 pp. | MR | MR | Zbl | Zbl
[43] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, 3rd ed., Springer, New York, 2013, xiv+405 pp. | DOI | MR | Zbl
[44] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl
[45] H. O. Cordes, “Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben”, Nachr. Akad Wiss. Göttingen Math.-Phys. Kl. IIa, 1956 (1956), 239–258 | MR | Zbl
[46] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl
[47] M. M. Eller, M. Yamamoto, “A Carleman inequality for the stationary anisotropic Maxwell system”, J. Math. Pures Appl. (9), 86:6 (2006), 449–462 | DOI | MR | Zbl